
Early Creation of Cross Toolkits for Embedded Systems

Nikolay Pakulin and Vladimir Rubanov

Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia

Abstract. Cross toolkits (assembler, linker, debugger, simulator, profiler) play a
key role in the development cycle of embedded systems. Early creation of cross
toolkits and possibility to quickly adapt them allows using them as early as at
the hardware/software codesign stage, which becomes an important success fac-
tor for the entire project. Challenging issues for cross toolkits development is
efficiency of simulation and CPU instruction set alterations at the design phase.
Developing cross toolkits in C/C++ produces highly efficient tools but requires
extensive rework to keep up with instruction set changes. Approaches based on
automatic toolkit generation from some top level specifications in Architecture
Description Languages (ADLs) are less sensitive to this problem but they produce
inefficient tools, especially simulators. This paper introduces a new approach to
cross toolkits development that combines the flexibility of ADL and efficiency
of C/C++ based approaches. This approach was implemented in the MetaDSP
framework, which was successfully applied in several industrial projects.

1 Introduction

Nowadays we witness emerging of various embedded systems with rather tough con-
straints (chip size, power consumption, performance) not only for aerospace and mil-
itary applications but also for industry and even consumer electronics. The constant
trend of cost and schedule reduction in microelectronics hardware design and devel-
opment makes it reasonable to develop customized computing systems for particular
applications and gives new momentum to the market of embedded systems. Such sys-
tems consist of a dedicated hardware platform developed for a particular application
and a problem-specific software optimized for that hardware.

The process of simultaneous design and development of hardware and software
components of an embedded system is usually referred to as hardware/software code-
sign and codevelopment. This broad term covers a number of subprocess or activities
related to embedded system creation:

1. design phase, including functional design, when requirements are studied and trans-
formed into functional architechture, and hardware/software partitioning, when func-
tions are divided between hardware and software components;

2. development phase or software/hardware codevelopment when both hardware and
software teams develop their components; both development activities may influ-
ence each other;

3. verification; it spans from unit and module tests to early integration testing in sim-
ulator/emulator.

Pakulin N. and Rubanov V. (2009).
Early Creation of Cross Toolkits for Embedded Systems.
In Proceedings of the International Workshop on Networked embedded and control system technologies: European and Russian R&D cooperation,
pages 108-119
Copyright c© SciTePress



109



Fig. 1. Co-development process.

Cross tools make it possible to run software on simulators or emulators of the tar-
get hardware early in the development process. Bottlenecks and performance problems
identified during running the software might require modification of the design, most
notably changes in instruction set or register file of the target embedded CPU.

Alterations in hardware design are characterisic features of co-development pro-
cesses in the industry. In section 5 we provide basic statistics on several industrial
project. The number of major changes in hardware specification vary from 25 to 39
with average 31 change per project.

In order to make the process seamless and continious cross toolkit developers must
rapidly react to such changes and produce new versions of the toolkit in short terms.
Changes in instruction set require updates in every tool of the cross toolkit. Cross tookit
developers must be very careful not to introduce errors during the modification process.

Another critical issue for cross-toolkits application in the co-development process is
performance of the tools. Special attention should be paid to the performance efficiency
of the simulator. High-performance simulators are required to perform validation and
profiling of the target software on real-life data within reasonable time. For instance,
processing a 10-seconds long speech sample on a DSP board takes about 7 · 1011 CPU
cycles. Running this sample on a simulator slower that 10 MCPS (10 millions of cycles
per second) result in more that two hours long test execution which could hardly be
considered feasible.

Simulator must be cycle-precise to guarantee correctness of profiling data. Usual
practice is not to require simulation of the funcional decomposition of the hardware. The
externally observable behavior of the simulator must be equivalent to that of the actual
hardware while the internal design need not follow the design of the target hardware
(pipline structure, ALU and FPU, internal buses etc.)

110



111



112



113



114



Fig. 3. MetaDSP framework structure.

For most of the manual components MetaDSP tools generate stubs or some basic
implementation in C++. Developers may use the generated code to implement peculiar-
ities of the target CPU, such as jumps prediction, instruction reordering, etc.

Using C/C++ to implement CPU control logic and memory model facilitates high
performance of the simulator. Another benefit of using C/C++ compared to true ADL
languages is an early development of the cross toolkit: it might start before complet-
ing the function decomposition of the target CPU; thus the simulator could be used to
experiment with design variations.

The framework includes OSCAR Studio, the IDE for target software development
within the MetaDSP framework. The IDE closely follows the look-and-feel style of Mi-
crosoft Visual Studio and provides the following capabilities to developers of embedded
systems:

1. Project Navigator. It displays the tree of the source files and data files.
2. Source Code Editor. The editor supports syntax highlight and instruction autocom-

pletion (from the ISE specification). The editor window is integrated with the de-
bugger - it marks break points, frame count points and trace points.

3. Stack Memory window that displays the contents of the stack.
4. Call Stack window that displays the enclosing frames (both assembly subroutines

and C functions).

115



Fig. 4. MetaDSP simulator architecture.

5. Register window that displays the contents of the CPU registers.
6. Memory dump window that displays contents of various memory regions.
7. Watch window that displays the current value of arbitrary C expressions.
8. Code Memory that window to track instructions being executed in the debugger.

It supports both binary and disassembly forms as well as displaying the current
pipeline stage (fetch, decode, execute, etc.).

9. OS debugger that enables steb-by-step debugging at C and assembler level with
various breakpoints and tracing the state of the execution environment (OS): list of
the current tasks, semaphores, mutexes, etc.

10. Profiler collecting various profiling data. The profiler is integrated with the editor
as well – the editor can show profiling information associated with code elements.

5 Industrial Applications

The approach presented in this paper and MetaDSP framework were applied to five
industrial projects. Please note that the each “major releases of the cross toolkit” men-
tioned in the project list below is caused by a major change in CPU design such as
modification of the instruction set or memory model alteration.

– 16-bit RISC DSP CPU with fixed point arithmetic. Produced 25 major releases of
the cross-toolkit.

116



Operation Duration, sec.
Translation (.c → .asm) 22
Assembly (.asm → .obj) 14
Link (.obj → .exe) 1

Build, total 37
Execution on the audio sample
(fast mode)

53

Execution on the audio sample
(debug mode with profiling)

93

117



Execution mode MCPS
Fast mode 12.6
Debug mode with profiling 7.2
Peak performance on a synthetic sam-
ple

25.0

6 Conclusions

The paper presents an approach to automation of cross toolkit development for special-
purpose embedded systems such as DSP and microcontrollers. The approach aims at
creation the cross tools, namely assembler/disassembler, linker, simulator, debugger,
and profiler, at early stages of system design. Early creation of the cross tools gives
opportunity to prototype and estimate efficiency of design variations, co-development of
the hardware and software components of the target embedded system, and verification
and QA of the hardware specifications before silicon production.

The presented approach relies on a two-level description of the target hardware:
description of the most flexible part – the instruction set and memory model – using
the new ADL language called ISE and description of complex fine grained functional
aspects of CPU operations using a general purpose programming language (C/C++).
Having ADL descriptions along with a framework to generate components of the target
cross toolkits and common libraries brings high level of responsiveness to frequent
changes in the initial design that are a common issue for modern industrial projects.
Using C/C++ gives cycle-accurate simulation and overall efficiency of the cross toolkits
that meets the needs of industrial developers. The approach is supported by a family of
tools comprising MetaDSP framework.

The approach is applicable to various embedded systems with RISC core architec-
tures. It supports simple pipelines with fixed number of stages, multiple memory banks,
instructions with fixed and variable cycle count. These facilities cover most of mod-
ern special purpose CPUs (esp. DSP) and embedded systems. Still some features of
modern general purpose high performance processors lay beyond the capabilities of the
presented approach: superscalar architectures, microcode, instruction multi-issue, out-
of-order execution. Besides this, the basic memory model implemented in MetaDSP
does not support caches, speculative access, etc.

Despite the limitations of the approach mentioned above it was successfully applied
in a number of industrial projects including 16 and 32-bit RISC DSPs and 16/32 ARM
CPUs. Number of major design changes (with corresponding releases of cross toolkits)
ranged in those projects from 25 to 40. The industrial applications of the presented
approach proved the concept of using the hybrid ADL/C++ description for automated
development of cross toolkits in a volatile design process.

118



119


