5. Bengtsson, J., M. G¨afvert, and P. Strandh (2004) Modeling of HCCI engine combustion for
control analysis. In Proc. Conf. Decision and Control (CDC 2004), Bahamas, Dec 2004.
6. Bengtsson, J., P. Strandh, R. Johansson, P. Tunest˚al, and B. Johansson (2004). Closed-loop
combustion control of homogeneous charge compression ignition (HCCI) engines dynamics.
Int. J. Adaptive Control and Signal Processing, 18:167–179.
7. Bengtsson, J., P. Strandh, R. Johansson, P. Tunest˚al, and B. Johansson (2004). System iden-
tification of homogenous charge compression ignition (HCCI) engine dynamics. In IFAC
Symp. Advances in Automotive Control (AAC04), Salerno, Italy, April 19-23, 2004.
8. Bengtsson, J., P. Strandh, R. Johansson, P. Tunest˚al, and B. Johansson (2006). Hybrid control
of homogeneous charge compression ignition (HCCI) engine dynamics. Int. J. Control,
79(5):422–448.
9. Bengtsson, J., P. Strandh, R. Johansson, P. Tunest˚al, and B. Johansson (2007). Hybrid mod-
elling of homogeneous charge compression ignition (HCCI) engine dynamic—A survey.
International Journal of Control, 80(11):1814–1848, November 2007.
10. Bitar, E. Y., H. J. Schock, and A. K. Oppenheim (2006). Model for control of combustion in
a piston engine. SAE Technical Papers 2006-01-0401.
11. Blom, D., M. Karlsson, K. Ekholm, P. Tunest˚al, and R. Johansson (2008). HCCI engine
modeling and control using conservation principles. In SAE World Congress, SAE Technical
Papers 2008-01-0789, Detroit, MI, April 2008.
12. Chase Jr., M. W. , C. A. Davies, J. R. Davies Jr., D. J. Fulrip, R. A. McDonald, and A. N.
Syverud (1985). JANAF thermochemical tables, 3rd ed. J. Physical and Chemical Reference
Data, 14, Supplement 1.
13. Chiang, C.-J. , A. G. Stefanopoulou, and M. Jankovic (2007). Nonlinear observer-based con-
trol of load transitions in homogeneous charge compression ignition engines. IEEE Trans.
Control Systems Technology,, 15(3):438–448.
14. Christensen, M., P. Einewall, and B. Johansson (1997). Homogeneous charge compression
ignition (HCCI) using isooctane, ethanol and natural gas—A comparison with spark-ignition
operation. SAE Technical Papers 972874.
15. Christensen, M., A. Hultqvist, and B. Johansson (1999). Demonstrating the multi-fuel ca-
pability of a homogeneous charge compression ignition engine with variable compression
ratio. SAE Technical Papers 1999-01-3679.
16. Colin, O., A. Pires da Cruz, and S. Jay (2005). Detailed chemistry-based auto-ignition model
including low temperature phenomena applied to 3-D engine calculations. Proc. Combustion
Institute, 30:2649–2656.
17. Cook, D. J., H. Pitsch, J. H. Chen, and E. R. Hawkes (2007). Flamelet-based modeling of
auto-ignition with thermal inhomogeneities for application to HCCI engines. Proc. Combus-
tion Institute, 31:2903–2911.
18. Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook (2002). A comprehensive modeling
study of isooctane oxidation. Combustion and Flame, 129:253–280.
19. Egeland, O., and J. Tommy Gravdahl (2002). Modeling and Simulation For Automatic Con-
trol. Marine Cybernetics, Trondheim, Norway.
20. Eriksson, L., L. Nielsen, and M. Glavenius (1997). Closed loop ignition control by ionization
current interpretation. SAE Technical Papers 970854.
21. Fieweger, K., R. Blumenthal, and G. Adomeit (1997). Self-ignition of s.i. engine model
fuels: A shock tube investigation at high pressure. Combustion and Flame, 109:599–619.
22. Franke, A. (2002). Characterization of an Electrical Sensor for Combustion Diagnostics.
PhD thesis, ISRN LUTFD/TFCP–80–SE, Dept. Physics, Lund University, Lund, Sweden.
23. Gavillet, G. G., J. A. Maxson, and A. K. Oppenheim (1993). Thermodynamic and thermo-
chemical aspects of combustion in premixed charge engines revisited. SAE Technical Papers
930432, 20.