TEMPORAL MINING IN IMPRECISE ARCHÆOLOGICAL KNOWLEDGE

Cyril de Runz, Eric Desjardin

2009

Abstract

In this paper, we propose a new temporal data mining method considering a set of arch ae ological objects which are temporally represented with fuzzy numbers. Our method uses an index which quantifies the anteriority between two fuzzy numbers for the construction of a weighted oriented graph. The vertices of the graph correspond to the temporal objects. Using this anteriority graph, we estimate the potential of anteriority, of posteriority and the relative temporal position of each object. We focus on excavation data from the ancient Reims stored in a Geographical Information System (GIS). We visualize the discovered temporal positions of objects and weighted relations between them in a layer of the GIS.

References

  1. Chen, S.-H. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, 17:113-129.
  2. Conolly, J. and Lake, M. (2006). Geographic Information System in Archaeology. Cambridge University Press.
  3. de Runz, C., Desjardin, E., Piantoni, F., and Herbin, M. (2007a). Management of multi-modal data using the Fuzzy Hough Transform: Application to archaeological simulation. In Rolland, C., Pastor, O., and Cavarero, J.-L., editors, First International Conference on Research Challenges in Information Science, pages 351-356.
  4. de Runz, C., Desjardin, E., Piantoni, F., and Herbin, M. (2007b). Using fuzzy logic to manage uncertain multimodal data in an archaeological GIS. In International Symposium on Spatial Data Quality - ISSDQ'07.
  5. de Runz, C., Desjardin, E., Piantoni, F., and Herbin, M. (2009). Anteriority index for managing fuzzy dates in archaeological GIS. Soft Computing. Online.
  6. Fortemps, P. and Roubens, M. (1996). Ranking fuzzy sets: a decision theoretic approach. Fuzzy Sets and Systems, 82:319-330.
  7. Jain, R. (1977). A procedure for multiple-aspect decision making using fuzzy set. Internat. J. Systems Sci., 8:1- 7.
  8. Kerre, E. E. (1982). The use of fuzzy set theory in electrocardiological diagnostics. In Gupta, M. and Sanchez, E., editors, Approximate Reasoning in DecisionAnalysis, pages 277-282. North-Holland Publishing Company.
  9. Saade, J. J. and Schwarzlander, H. (1992). Ordering fuzzy sets over real line: an approach based on decision making under uncertainty. Fuzzy Sets and Systems, 50:237-246.
  10. Wang, X. and Kerre, E. E. (2001a). Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets anf Systems, 118:375-385.
  11. Wang, X. and Kerre, E. E. (2001b). Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets anf Systems, 118:387-405.
  12. Wang, X., Kerre, E. E., Cappelle, B., and Ruan, D. (1995). Transitivity of Fuzzy Orderings Based on Pairwise Comparis. The Journal of Fuzzy Mathematics, 3(2):455-463.
  13. Zadeh, L. A. (1965). Fuzzy Sets. Information Control, 8:338-353.
Download


Paper Citation


in Harvard Style

de Runz C. and Desjardin E. (2009). TEMPORAL MINING IN IMPRECISE ARCHÆOLOGICAL KNOWLEDGE . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICFC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 47-52. DOI: 10.5220/0002280700470052


in Bibtex Style

@conference{icfc09,
author={Cyril de Runz and Eric Desjardin},
title={TEMPORAL MINING IN IMPRECISE ARCHÆOLOGICAL KNOWLEDGE},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICFC, (IJCCI 2009)},
year={2009},
pages={47-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002280700470052},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICFC, (IJCCI 2009)
TI - TEMPORAL MINING IN IMPRECISE ARCHÆOLOGICAL KNOWLEDGE
SN - 978-989-674-014-6
AU - de Runz C.
AU - Desjardin E.
PY - 2009
SP - 47
EP - 52
DO - 10.5220/0002280700470052