0
200
400
600
800
1000
1200
1400
1600
1800
2000
10 11 12 13 14 15 16 17 18 19
Computational Time (s)
Type G1
GA
DP
0
200
400
600
800
1000
1200
1400
1600
1800
2000
10 11 12 13 14 15 16 17 18 19
Computational Time (s)
Type G2
GA
DP
0
500
1000
1500
2000
2500
10 11 12 13 14 15 16 17 18 19
Computational Time (s)
Problem Size (number of vertices)
Type G3
GA
DP
Figure 5: The effect of the value of H on computational
time, for type G1, G2, and G3, respectively.
REFERENCES
Ahuja, R. and Orlin, J. (2001). Multi-exchange neighbor-
hood structures for the capacitated minimum spanning
tree problem. Mathematical Programming, 91:71–97.
Bean, J. (1994). Genetics and random keys for sequenc-
ing and optimization. ORSA Journal on Computing,
6:154–160.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2001). Introduction to algorithms. MIT press Cam-
bridge, MA, 2nd edition.
Dahl, G., Gouveia, L., and Requejo, C. (2006). On for-
mulations and methods for the hop-constrained mini-
mum spanning tree problem. In Pardalos, P. M. and
Resende, M., editors, Handbooks of Telecommunica-
tions, pages 493–515. Springer.
Deering, S. E., D., D. E., and Farinacci (1994). An archi-
tecture for wide-area multicast routing. Proceedings
of SIGCOMM.
Fontes, D. B. M. M. (2009). Optimal hop-constrained trees
for nonlinear cost flow networks. INFOR, to appear.
Fontes, D. B. M. M. and Gonc¸alves, J. F. (2007). Heuristic
solutions for general concave minimum cost network
flow problems. Networks, 50:67–76.
Fontes, D. B. M. M., Hadjiconstantinou, E., and
Christofides, N. (2003). Upper bounds for single
source uncapacitated minimum concave-cost network
flow problems. Networks, 41:221–228.
Gen, M., Cheng, R., and Oren, S. (2001). Network de-
sign techniques using adapted genetic algorithms. Ad-
vances in Engineering Software, 32:731–744.
Gen, M., Kumar, A., and Kim, R. (2005). Recent network
design techniques using evolutionary algorithms. In-
ternational Journal of Production and Economics,
98:251–261.
Gonc¸alves, J. (2007). A hybrid genetic algorithm-
heuristic for a two-dimensional orthogonal packing
problem. European Journal of Operational Research,
183:1212–1229.
Gonc¸alves, J. and Almeida, J. (2002). A hybrid genetic
algorithm for assembly line balancing. Journal of
Heuristics, 8:629–642.
Gonc¸alves, J., Mendes, J., and Resende, M. (2005). A
hybrid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Research,
167:77–95.
Gonc¸alves, J. and Resende, M. (2004). An evolutionary al-
gorithm for manufacturing cell formation. Computers
and Industrial Engineering, 47:247–273.
Gouveia, L., Paias, A., and Sharma, D. (2008). Modeling
and solving the rooted distance-constrained minimum
spanning tree problem. Computers & Operations Re-
search, 35:600–613.
Gouveia, L. and Requejo, C. (2001). A new lagrangean re-
laxation approach for the hop-constrained minimum
spanning tree problem. European Journal of Opera-
tional Research, 132:539–552.
Han, L., Wang, Y., and Guo, F. (MAY 2005). A new genetic
algorithm for the degree-constrained minimum span-
ning tree problem. IEEE International Workshop on
VlSI Design and Video Technology, pages 125–128.
Lacerda, E. and Medeiros, M. (2006). A genetic al-
gorithm for the capacitated minimum spanning tree
problem. IEEE Congress on Evolutionary Computa-
tion, 1-6:725–729.
LeBlanc, L. and Reddoch, R. (1990). Reliable link topol-
ogy/capacity design and routing in backbone telecom-
munication networks. First ORSA telecommunica-
tions SIG conference.
Raidl, G. and Julstrom, B. (2003). Edge sets: An effective
evolutionary coding of spanning trees. IEEE Transac-
tions on Evolutionary Computation, 7:225–239.
Thompson, E., Paulden, T., and Smith, D. (2007). The dan-
delion code: A new coding of spanning trees for ge-
netic algorithms. IEEE Transactions on Evolutionary
Computation, 11:91–100.
Woolston, K. and Albin, S. (1988). Design of centralized
networks with reliability and availability constraints.
Computers & Operations Research, 15:207–217.
Zeng, Y. and Wang, Y. (2003). A new genetic algorithm
with local search method for degree-constrained min-
imum spanning tree problems. Proceedings of IC-
CIMA, pages 218–222.
IJCCI 2009 - International Joint Conference on Computational Intelligence
182