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Abstract: This paper presents the application of a computational intelligence methodology in effort estimation for 
software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to 
produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the 
development effort by revealing relationships between the project’s features and the required work. We 
selected to investigate the effectiveness of this methodology into two software engineering domains. The 
system was proved able to generate models in the form of handy mathematical expressions that are more 
accurate than those found in literature. 

1 INTRODUCTION 

In software projects, the development effort affects 
dramatically the project cost. One of the main 
software engineering challenges that project 
managers encounter is to estimate this human effort. 
Consequently, many approaches have been used to 
support such effort estimation. Contemporary 
methodologies include predictive parametric models, 
such as the COCOMO (Boehm, 1981) and the Price 
S (Price, 2007). Other approaches are also used for 
this estimation, ranging from historical analogy and 
mathematical models to rules-of-thumb. Systems 
that use historical analogy base their evaluation on 
past projects. Mathematical models offer 
relationships between project attributes, usually 
derived by examination of previous projects.  The 
changing nature of software engineering however, 
prevented many of these models from carrying 
accurate results. 

In this work, we propose the application of the 
genetic programming paradigm (Koza, 1992), to 
derive mathematical models for effort estimation 
using data mining. Such a system can make use of 
past software project data and automatically produce 
a mathematical model. Hence, this approach can be 
classified as an analogy method, since it uses 
analogous data from the past, in order to produce the 
regression norm. Additionally, since the result is a 
mathematical expression, it also comes under the 

model-based approaches. This combination seems 
very attractive for the software project effort 
estimation domain, combining both the data 
mining’s search strength, and the GP symbolic 
regression’s expression ability. The expected result 
of such process can be a strong regression tool 
derived by analogy, which will be also simple to use, 
since it will be consisted of a mathematical formula.  

In this study, we apply the genetic programming 
framework in two software engineering domains, 
aiming to estimate the required effort of software 
projects. The application of data mining models has 
become prevailing recently in software engineering, 
carrying competitive results that can provide 
advantages to project managers (Rodriguez et al., 
2006) (Menzies and Di Stefano, 2004). In (Shepperd 
and Schofield, 1997), a case-based reasoning 
approach is examined and compared with a set of 
regression models. In (Aguilar-Ruiz et al., 2001), a 
genetic algorithm approach manages to effectively 
produce a quality set of rules for a decision-making 
framework. Also, a genetic programming approach 
has been applied to the assessment of human 
evaluators in software projects (Boetticher et al., 
2006). 

 The paper is organized as follows. Next section 
describes the background, presenting the effort 
estimation concept for software projects and the 
genetic programming principle. Section 3 deals with 
the design and the implementation of the GP system. 
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The results and a followed discussion are presented 
in Section 4. The paper ends with our conclusion 
and a description of future work in Section 5. 

2 BACKGROUND 

2.1 Effort Estimation for Software 
Projects 

When considering software projects, the dominant 
cost is the labor cost. Hence, it is mandatory to 
estimate the effort required for the software 
development as precise as possible. In general, 
aiming to estimate the software project effort 
involves the definition of resources that are needed 
to produce, verify and validate the software product 
as well as the management of these activities. It also 
involves the quantification of the uncertainty and 
risk of this estimation, in those cases that this can be 
useful (Lum et al., 2003).   

The methods used for effort estimation can be 
classified into four categories: historical analogy, 
experts’ decision, use of models and rules-of-thumb. 
• Historical analogy is used when there are 

similar data available from the past. Usually, 
it involves comparison, using measures or 
data that has been recorded in previous 
completed software projects. Estimations 
with analogy can be made for both the high-
level overall software project effort, and for 
individual tasks when developing the main 
software cost estimates. The high-level 
estimation is applied during the early stage of 
the software project life cycle, and it usually 
requires further adjustments afterwards, since 
there is rarely a perfect analogy. 

• Experts’ decision involves the estimates 
produced by a human expert based on what 
he has experienced from past projects that 
carry similarity. According to (Hihn and 
Habib-agathi, 1991), although this estimation 
is highly subjective, it can be fairly accurate 
when the expert is experienced enough in 
both the software domain and the estimation 
procedure. 

• The use of models involves estimates 
produced by mathematical or parametric cost 
models. These are empirical equations that 
have been derived mainly using statistical 
methods. They usually concern human effort, 
cost and schedule. 

• The last approach that is used for effort 

estimation can be rules-of-thumb. These rules 
may have various forms and usually they 
consist of a very simple mathematical 
equation, or a percentage allocation of effort 
over activities or phases, based on historical 
data. 

In most cases, the actual procedure of effort 
estimation is performed by a combination of the 
above methodologies, and the involvement of each 
approach depends on the stage of the software 
project. The main source of estimation during the 
first stages of a software project, are the high-level 
analogies and the model-based estimates. As the 
project progresses and the required work become 
tangible, the primary method for estimation becomes 
the analogy, and the model-based estimates are used 
for sanity-check. 

2.2 Genetic Programming 

Genetic and evolutionary algorithms are used in 
various domains where a direct search method (e.g. 
back-propagation in neural networks) cannot be 
applied or is inefficient due to the nature of the 
problem. Crossover and reproduction in genetic 
programming are considered (Koza, 1992) the most 
important operations. Additionally, recent 
development, adopted also by our genetic 
programming approach, suggests (Singleton, 1994) 
that special types of mutation, such as shrink 
mutation, may offer better search in the solution 
space. The genetic programming process followed 
through this paper, can be divided into five (5) steps: 

1. Create a random population of programs 
using the symbolic expressions provided. 

2. Evaluate each program, assigning a fitness 
value according to a pre-specified fitness 
function, which actually corresponds to the 
ability of the program to solve the problem. 

3. Use reproduction techniques to copy existing 
programs into the new generation. 

4. Recombine genetically the new population 
with the crossover function from a 
“randomly-based” chosen set of parents. 

5. Repeat steps 2–4, until the termination 
criterion has been achieved.  

Each node of the candidate solutions belongs to 
either the function set (FS) or the terminal set (TS). 
The function set contains functions available to the 
GP search, and the terminal set contains constants 
and input attributes. As in most common GP 
approaches addressing symbolic regression 
problems, in our implementation we used FS ={+, -, 
*, %} where the symbol “%” stands for protected 
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division (Koza, 1992). We set the data range of the 
constants to [-1, 1]. 

3 DESIGN AND 
IMPLEMENTATION 

3.1 Data Preprocessing 

We have tested the methodology in two effort 
estimation data sets: the COCOMONASA and the 
COC81. The COCOMONASA domain has been 
addressed in the work of (Menzies et al., 2005), 
(Chen et al., 2005) and (Menzies et al., 2005), and 
the COC81 data set has been examined in 
(Srinivasan and Fisher, 1995), (Menzies et al., 
2005). Both sets have become recently available by 
the PROMISE repository (http://promise.site. 
uottawa.ca/SERepository/) of public domain 
software engineering data sets. Especially for the 
COCOMONASA data, we substituted the original 
descriptions of the initial data set with numerical 
values, i.e. the value set {Very_Low, Low, Nominal, 
High, Very_High} was substituted by the set 
{0,1,2,3,4}, with the value 0 corresponding to 
Very_Low and so on. In both data sets, we 
performed linearization to the Lines-of-Code 
(KSLOC) and months features (output feature), by 
substituting the original values with their natural 
logarithms. The treatment of this data, regarding 
linearization, followed the conclusions found in 
(Menzies et al., 2005). All the data was then 
normalized in the range [-1,1], in order to improve 
the search process. In candidate solutions, only 
numbers belonging in that range are used; in our 
experiments this approach was shown to facilitate 
the exchange of genetic material and reduce the 
search space. To normalize, for each feature y , the 
equation that follows is applied: 

( ) 2 i
iN

y m
y

r
y

y

−
= ⋅                                               (1) 

where: 

( )iN
y : normalized value of iy  

max min

2
y ymy

+
=   (2) 

max minr y yy = −  (3) 

Table II and Table VI, summarize the available 
features and their value ranges for these data sets. 

3.2 Genetic Programming Setup 

We have adopted a steady-state genetic process 
(Rogers and Prügel-Bennett, 1999). In order to 
create the initial population, four types are usually 
candidates: Variable, Grow, Ramped and Ramped 
Half and Half. The latter, developed by Koza (Koza, 
1992), is used in the majority of the genetic 
software; therefore it is followed in this work. The 
tournament selection (Blickle T. and Theile, 1995) 
was selected, as this is the most widely used among 
the genetic software. By this process, a number of 
genetic programs from the population is randomly 
selected. The fitness of each member of this group is 
compared and the actual best replaces the worst. The 
number to randomly select individuals for each 
group is usually 5 to 7. In this work, a group of 7 
individuals was selected. To improve the search 
process and control the solution size, an adaptive 
scheme for the operation rates was followed 
(Tsakonas and Dounias, 2007), starting with 
crossover 80 % of the time, mutation 15% of the 
time, and straight copy 5% of the time. Mutation 
was further subdivided into 60% shrink mutation, 
20% node mutation and 20% constant mutation 
focusing this way on searching, when possible, small 
candidate solutions. The crossover used is a subtree-
crossover. By this scheme, two internal nodes are 
selected in each parent tree. Then, the subtree 
defined by the first internal node exchanges place 
with the subtree of the second internal node, as long 
as the size for each derived tree is not exceeding the 
maximum tree size. The aforementioned maximum 
tree size was selected to be 650 nodes.  All GP 
parameters are summarized in Table 1. 

Since having only one sample as test set is 
susceptible to overfitting (Eads et al., 2002), we 
performed 10-fold cross validation, keeping each 
time a 10% of the data as test set.  Cross validation 
increases the reliability of the results of a regression 
system, and the recommended number of folds is 5 
to 10.  In 10-fold cross validation, the training data 
is split into 10 folds. Each fold is then used as the 
testing data and the rest n-1 folds of data are used as 
the training data to retrain the model and generate 
evaluation results. The final evaluation result is 
aggregated from the result of each fold. To improve 
the search process, we further separated this training 
data into two sets: an actual data set used for the 
training (called hereinafter as actual training data 
set) and a validation set. During the run, the actual 
training data set is used to evaluate candidate 
solutions. However, in order to promote a candidate 
as the solution of the run, in our approach it is 
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required that this candidate achieves higher 
regression score in the validation set as well. This 
approach can help to encounter overfitting problems 
that appear when using only training set (Quinlan, 
1996).  

3.3 Fitness Function 

As fitness measure we have applied the commonly 
used root mean square error (RMSE). In literature, a 
variance of other measures has also been proposed 
(Shepperd and Schofield, 1997). Hence, for 
comparison reasons, other metrics are also 
calculated, such as the mean absolute error (MAE), 
and also the mean magnitude relative error 
(MMRE), and the PRED(25) and PRED(30) that 
have been proposed in (Conte et al., 1986). In 
general, the PRED(r) function calculates the 
percentage of the estimated values that have relative 
error less than r. In past works, the PRED(30) has 
been used for these domains and including this 
measure in our study, it allows for direct 
comparison. In software engineering, the standard 
criteria to consider a model acceptable are 

0.25MMRE ≤  and (25) 75%PRED ≥  (Dolado, 2001). 

Table 1: Genetic Programming Parameters. 

Parameter Value 

Population 9,000 individuals 

GP implementation Steady state GP 

Selection 
Tournament 

with elitist strategy 
Tournament size 7 

Crossover rate 
0.8   (adaptive; see (Tsakonas and 

Dounias, 2007)) 

Overall mutation rate 
0.15 (adaptive; see (Tsakonas and 

Dounias, 2007)) 

Straight copy rate 
0.05 (adaptive; see (Tsakonas and 

Dounias, 2007)) 
Mutation: Shrink 

mutation rate 
0.6 

Mutation: Node 
mutation rate 

0.2 

Mutation: Constant 
mutation rate 

0.2 

Maximum size of 
individuals (nodes) 

650 

Maximum number of 
generations 

200 

In addition, we included measures which are 
variance-independent, such as the root relative 
square error (RRSE) and the root absolute error 
(RAE), aiming to facilitate comparison with future 

works, since the data in our system has been 
normalized in [-1,1] and the RMSE values cannot be 
used directly for comparison, unless the same 
normalization is applied beforehand.  The following 
equations summarize the calculation of each 
aforementioned measure. 
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where: 
iy  : actual value of case i   

ˆiy  : estimated value of case i   
iy  : mean value of test set cases 

n   : number of cases in test set 
r  : value (range) for which the PRED function 

is calculated, usually set to 25 or 30 

Having discussed the system design, in the 
following session we shall apply the methodology in 
the software engineering domain. 

4 RESULTS AND DISCUSSION 

4.1 COCOMONASA Domain 

The COCOMONASA dataset consists of 60 NASA 
projects from different centers for projects from the 
1980s and 1990s. This data comes from the 
aerospace software domain. There are 17 attributes 
that are all numeric: 15 attributes are the effort 
multipliers, one is the Lines-of-Code (LOC) and one 
attribute is the actual development effort. The LOC 
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variable has been estimated directly or computed 
beforehand, using function point analysis (Dreger, 
1989). The task is to tune a new cost model, for a 
given background knowledge. In (Menzies et al., 
2005), a very simple calibration method (called 
COCONUT) achieved PRED(30)=70% and 
PRED(20)=50%. These results were seen in 30 
repeats of an incremental cross-validation process.  
In the same paper, two cost models are compared; 
one based in lines of code and one using additionally 
14 so-called effort multipliers. The use of only lines 
of code resulted into the loss 10 to 20 PRED(r) 
points. In (Chen et al., 2005), a feature subset 
selection (FSS) is applied to this software effort 
data. The paper shows that FSS can dramatically 
improve cost estimation. Table 2 summarizes the 
available features and their value ranges. Further 
details on each feature can be found in (Boehm, 
1981). 

Table 2: Data Features and Value Range. 

Variable Description Max Min 

rely Required software 
reliability 

4 1 

data Data base size 4 1 

cplx Process complexity 5 1 

time Time constraint for 
CPU 

5 2 

stor Main memory 
constraint 

5 2 

virt Machine volatility 3 1 

turn Turnaround time 3 1 

acap Analysts capability 4 2 

aexp Application 
experience 

4 2 

pcap Programmers 
capability 

4 2 

vexp Virtual machine 
experience 

3 1 

lexp Language 
experience 

3 0 

modp Modern 
programming 
practices 

4 1 

tool Use of software 
tools 

4 0 

sced Schedule constraint 3 1 

ln(KSLOC) Software size lines-
of-code 

6.04 0.788 

ln(months) Effort in months 8.08 2.128 

Table 3 summarizes our results per fold run, and 
includes the mean and the standard deviation for 

each measure and feature of the solution. The 
column Generation is the generation in which the 
solution was found, and the Size column is the 
number of nodes of the solution tree (e.g. the 
complexity of the derived mathematical formula). 
As it can be seen from Table 3, the derived solutions 
can vary significantly in their size, depending on the 
fold used. The following solution that was derived in 
fold #7, is surprisingly small, with only two features 
used (apart KSLOC), and it achieved 100% 
PRED(25). 

( )( ) ( )( ) ( ) ( )ln ln 0.03
N NN N

months KSLOC virt turn⎡ ⎤= − ⋅ +⎢ ⎥⎣ ⎦
  (10) 

where ( ) N
⋅  denotes that the normalized values 

of the corresponding variables are used. 

Table 3: GP 10-Fold Cross Validation Results.  

Fold # RMSE MAE RRSE RAE MMRE 

1 0.088 0.071 0.202 0.186 0.158 

2 0.029 0.026 0.077 0.080 0.084 

3 0.093 0.082 0.195 0.191 0.189 

4 0.148 0.105 0.653 0.510 0.302 

5 0.276 0.181 0.617 0.458 0.328 

6 0.061 0.040 0.160 0.120 0.112 

7 0.060 0.048 0.104 0.093 0.098 

8 0.168 0.142 0.416 0.403 0.223 

9 0.148 0.103 0.317 0.270 0.677 

10 0.154 0.118 0.349 0.303 0.424 

Mean 0.122 0.092 0.309 0.261 0.259 

StdDev 0.072 0.048 0.202 0.154 0.184 
 

Fold # PRED(25) PRED(30) Size Generation 

1 66.7% 100.0% 511 14 

2 100.0% 100.0% 313 13 

3 66.7% 83.3% 467 46 

4 50.0% 66.7% 73 135 

5 50.0% 50.0% 301 148 

6 100.0% 100.0% 509 100 

7 100.0% 100.0% 7 8 

8 50.0% 66.7% 5 4 

9 66.7% 66.7% 195 14 

10 50.0% 50.0% 3 4 

Mean 70.0% 78.3% 238 49 

StdDev 21.9% 20.9% 211 57 

It is worth to note that KSLOC and turn variables 
are also present in all derived models in the work of 
(Chen et al., 2005), while the virt variable occurs 
only in 1 of the 10 models. As stated previously, the 
months and KSLOC variables used in our study have 
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been changed to the natural logarithms of the 
original data set values. If we perform the reverse 
conversion (e.g. de-normalizing), we result into the 
following simple relation between the original data 
set values: 

0.3803ln( ) 0.03 0.03 0.2949
0.3358

KSLOC virt turn

months e
− − +

=    (11) 

In Table 4, the occurrence of each feature in the 
solutions found for all folds is shown.  

Table 4: Feature Frequency. 

Variable Times Variable Times 

ln(KSLOC) 10 virt 4 

aexp 6 pcap 4 

rely 5 vexp 4 

data 5 tool 4 

time 5 sced 4 

stor 5 cplx 3 

turn 5 acap 3 

lexp 5 modp 2 

Table 5 compares our results for PRED(30) to 
those found in literature with best values in bold.  As 
it can be seen, our system achieved a higher 
PRED(30) rate as compared to past works, in both 
the average resulted value and the highest one 
produced. On the other hand, in this table we present 
a high standard deviation in our system.  

Table 5: PRED(30) Results Comparison. 

Publication Method Avg. Std.De
v 

Best 

(Menzies et 
al., 2005) 

coconut n/a n/a 70,0% 

(Chen et 
al., 2005) 

wrapper FSS 76.7% 7.3%* 81,3% 

(Menzies et 
al., 2005) 

lsr_num_ln 69.7% 11.1% n/a 

(Menzies et 
al., 2005) 

lsr_em_ln 68.5% 12.5% n/a 

(Menzies et 
al., 2005) 

m5_num_ln 73.5% 10.7% n/a 

(Menzies et 
al., 2005) 

m5_em_ln 69.7% 10.5% n/a 

(Menzies et 
al., 2005) 

m5_em_loc_ln 60.5% 9.6% n/a 

(Menzies et 
al., 2005) 

lsr_em_loc_ln 60.5% 9.6% n/a 

(Menzies et 
al., 2005) 

m5_num_loc_ln 55.3% 11.7% n/a 

(Menzies et 
al., 2005) 

lsr_num_loc_ln 40.8% 11.7% n/a 

Table 5: PRED(30) Results Comparison (Cont.). 

(Menzies et 
al., 2005) 

m5_em 41.0% 14.4% n/a 

(Menzies et 
al., 2005) 

m5_num 41.5% 11.6% n/a 

(Menzies et 
al., 2005) 

m5_num_loc  42.0% 8.9% n/a 

(Menzies et 
al., 2005) 

lsr_num_loc  41.2% 12.7% n/a 

(Menzies et 
al., 2005) 

lsr_em_loc_ln 40.2% 8.4% n/a 

(Menzies et 
al., 2005) 

lsr_num 31.0% 12.7% n/a 

(Menzies et 
al., 2005) 

lsr_em 28.7% 8.4% n/a 

This study 

genetic  
programming 

78.3
% 

20.9% 100% 

* best reported value 

The reason for this is that we record here the 
standard deviation of PRED(30) encountered during 
the 10-fold cross validation, which results from 
evaluating different test data sets (e.g. for each fold 
validation). On the other hand, in (Chen et al., 2005) 
the test sets are selected randomly for each run, 
allowing for potential set overlapping; in (Menzies 
et al., 2005) the standard deviation is reported over 
30 runs on the same data set. Hence, taking into 
respect the (completely) different test sets 
encountered, we consider the high value of our 
system’s standard deviation as being a natural result. 

4.2 COC81 Domain 

The COC81 dataset consists of 63 instances. This 
data comes from a variety of domains such as 
financial, engineering and science projects. There 
are 17 attributes that are all numeric: 15 attributes 
are the effort multipliers, one is the Lines-of-Code 
(LOC) and one attribute is the actual development 
effort. There are no missing attributes. In (Srinivasan 
and Fisher, 1995), a variety of methods are 
examined into a related data set, including neural 
networks, regression trees, COCOMO and the SLIM 
model (Putnam, 1978). The neural networks and 
function-point based prediction models 
outperformed regression trees, and the latter 
outperformed COCOMO and the SLIM model. 
Table 6 summarizes the available features and their 
value ranges. A detailed description for these 
features appears in (Boehm, 1981). As it can be seen 
from Table 7, the derived solutions can vary 
significantly in their size, depending on the fold 

DERIVING MODELS FOR SOFTWARE PROJECT EFFORT ESTIMATION BY MEANS OF GENETIC
PROGRAMMING

39



 

used. The following solution that was derived in fold 
#1, has only one feature used (apart KSLOC), and it 
achieves 57.1% PRED(25). 

( )( ) ( )( ) ( )ln ln 0.15
NN N

months KSLOC virt= − ⋅         (12) 

where ( )  
N

⋅  is a symbol for the normalized 

values of the corresponding variables, as previously. 

Table 6: Data Features and Value Range.  

Variable Description Maximum Minimum 

rely Required software 
reliability 

1.400 0.750 

data Data base size 1.160 0.940 

cplx Process 
complexity 

1.650 0.700 

time Time constraint for 
CPU 

1.660 1.000 

stor Main memory 
constraint 

1.560 1.000 

virt Machine volatility 1.300 0.870 

turn Turnaround time 1.150 0.870 

acap Analysts capability 1.460 0.710 

aexp Application 
experience 

1.290 0.820 

pcap Programmers 
capability 

1.420 0.700 

vexp Virtual machine 
experience 

1.210 0.900 

lexp Language 
experience 

1.140 0.950 

modp Modern 
programming 
practices 

1.240 0.820 

tool Use of software 
tools 

1.240 0.830 

sced Schedule 
constraint 

1.230 1.000 

ln(KSLOC) Software size 
lines-of-code 

7.048 0.683 

ln(months) Effort in months 9.341 1.775 

The variable KSLOC is also present in all derived 
models in the work of (Menzies et al., 2005), and the 
virt variable occurs in 9 of the 10 models. As stated 
previously, the months and KSLOC variables used in 
our study have been changed to the natural 
logarithms of the original data set values. By 
performing the reverse necessary conversions (e.g. 
de-normalizing), we conclude to the following 
simple equation between the original data set values: 

1.188ln( ) 2.637 20.05KSLOC virtmonths e − +=               (13) 

Table 8 summarizes the occurrence of each 
feature to the solutions found in all folds. 

Table 7: GP 10-Fold Cross Validation Results.  

Fold # RMSE MAE RRSE RAE MMRE 

1 0.174 0.119 0.449 0.337 0.465 

2 0.147 0.133 0.389 0.408 0.836 

3 0.214 0.156 0.782 0.647 0.465 

4 0.206 0.162 0.741 0.761 0.949 

5 0.294 0.231 0.933 0.841 1.895 

6 0.221 0.192 0.700 0.734 1.027 

7 0.305 0.224 0.525 0.441 1.411 

8 0.219 0.169 0.352 0.332 1.209 

9 0.208 0.183 0.332 0.351 0.458 

10 0.201 0.182 0.376 0.403 0.696 

Mean 0.219 0.175 0.558 0.526 0.941 

StdDev 0.048 0.035 0.214 0.197 0.467 
 

Fold # Size 
PRED 
(25) 

PRED 
(30) 

Generation 

1 5 57.1% 57.1% 2 

2 107 42.9% 42.9% 8 

3 7 50.0% 50.0% 3 

4 11 50.0% 50.0% 8 

5 5 33.3% 33.3% 6 

6 23 50.0% 50.0% 8 

7 15 50.0% 50.0% 10 

8 13 50.0% 50.0% 7 

9 5 50.0% 50.0%  13 

10 7 42.9% 42.9% 5 

Mean 20 47.6% 47.6% 7 

StdDev 31 6.4% 6.4% 3 

Table 9 compares our results for PRED(30) to 
those found in literature. The best values are shown 
in bold. The low success rates for all models reflect 
the fact these COC81 data concern projects from 
different domains (e.g. financial, engineering, etc.) 
while the COCOMONASA data addressed the 
aerospace project domain only, which follows the 
stratification hypothesis (Boehm  et al., 2000). A 
comparison to the results of (Srinivasan and Fisher, 
1995) is not included, since in that publication, an 
extended feature set was used (e.g. 39 attributes 
were used, instead of the 17 ones that have become 
publicly available in the PROMISE repository). As it 
can be observed in the results presented in Table 9, 
our system outperformed those found in literature, in 
both the average and best PRED(30) values, as well 
as to its standard deviation. 
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Table 8: Feature Frequency. 

Variable Times Variable Times 

ln(KSLOC) 10 cplx 2

virt 6 acap 2

stor 4 turn 1

rely 3 time 1

vexp 2 pcap 1

tool 2 aexp 1

sced 2 modp 0

lexp 2 data 0

Table 9: PRED(30) Results Comparison. 

Publication Method Average 
Std. 
dev 

Best 

(Chen et al., 2005) * 
wrapper 

FSS 
45.8% 9.3% 

51,3
% 

(Menzies et al., 2005) 
lsr_num_

ln 
44.3% 10.8% n/a 

(Menzies et al., 2005) 
lsr_em_l

n 
40.0% 9.7% n/a 

(Menzies et al., 2005) 
m5_num

_ln 
39.7% 13,7% n/a 

(Menzies et al., 2005) 
m5_em_l

n 
38.4% 9.2% n/a 

(Menzies et al., 2005) 
m5_em_l

oc_ln 
21.7% 8.5% n/a 

(Menzies et al., 2005) 
lsr_em_l

oc_ln 
21.7% 8.5% n/a 

(Menzies et al., 2005) 
m5_num
_loc_ln 

20.6% 6.9% n/a 

(Menzies et al., 2005) 
lsr_num_

loc_ln 
20.6% 6.9% n/a 

(Menzies et al., 2005) m5_em 15.4% 8.4% n/a 

(Menzies et al., 2005) m5_num 13.7% 8.7% n/a 

(Menzies et al., 2005) 
m5_num

_loc 
11.7% 6.9% n/a 

(Menzies et al., 2005) 
lsr_num_

loc 
11.3% 6.7% n/a 

(Menzies et al., 2005) 
lsr_em_l

oc_ln 
11.3% 6.7% n/a 

(Menzies et al., 2005) lsr_num 9.4% 6.7% n/a 

(Menzies et al., 2005) lsr_em 7.9% 6.8% n/a 

(Menzies et al, 2006)* 
coc81:ki
nd.max 

47% 51% n/a 

This study 

genetic 
program

ming 
47.6% 6.4% 

57.1
% 

    * best reported value 

5 CONCLUSIONS AND FURTHER 
RESEARCH  

In respect to the software engineering, the needs for 
accurate and easily applicable estimating models 
have become increasingly demanding recently. In 
this work, a genetic programming approach for 
symbolic regression was proposed for the problem 
of software project effort estimation. Data 
preprocessing took place in order to enhance the 
search process. This genetic programming model 
was further configured with the incorporation of 
cross-validation technique and a validation set. 
Special attention was paid into the operators to be 
included and the operations rates in order to boost 
search and increase solution comprehensibility. The 
model was then effectively applied into two software 
engineering domains that have recently become 
publicly available from the PROMISE data 
repository. In both domains, our system was proved 
capable to produce results that not only carry higher 
regression accuracy as compared to those found in 
literature, but also are interpretable mathematical 
formulas, easy to be used by project managers. The 
overall approach was shown fairly robust to be 
applied into more software engineering estimation 
domains. 

Further work involves the application of genetic 
programming into more effort estimation domains, 
as well as to other software engineering problems, 
such as defect prediction and text mining tasks for 
analyzing code comprehensibility. Additionally, we 
plan to apply this methodology using incrementally 
smaller test sets, in order to draw conclusions on 
incremental holdout results (Menzies et al., 2005). 
Also, we aim to apply strongly typed genetic 
programming (Montana, 1995) into the datasets of 
this study. We expect that a strongly typed GP 
approach will further improve the resulted formula’s 
precision, since it will guide the search process only 
through the subspace of rational solutions. Finally, 
among further research is applying to the examined 
domains other computational intelligence models, 
such as the Takagi-Sugeno fuzzy rule-based model 
(Takagi and Sugeno, 1985), for the production of 
comprehensive, fuzzy competitive rules. 
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