Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-
organized criticality: An explanation of the 1/f noise.
Phys. Rev. Lett., 59(4):381–384.
Bantilan, F. T. and Palmer, R. G. (1981). Magnetic prop-
erties of a model spin glass and the failure of linear
response theory. J. Phys. F: Metal Phys., 11:261–266.
Boettcher, S. (1999). Extremal optimization and graph par-
titioning at the percolation threshold. J. Math. Phys.
A: Math. Gen., 32:5201–5211.
Boettcher, S. (2003). Numerical results for ground states
of mean-field spin glasses at low connectivities. Phys.
Rev. B, 67:R060403.
Boettcher, S. (2005). Extremal optimization for
Sherrington-Kirkpatrick spin glasses. Eur. Phys. J. B,
46:501–505.
Boettcher, S. (2009). Simulations of Energy Fluctuations in
the Sherrington-Kirkpatrick Spin Glass. (submitted)
arXiv:0906.1292.
Boettcher, S. and Frank, M. (2006). Optimizing at the er-
godic edge. Physica A, 367:220–230.
Boettcher, S. and Grigni, M. (2002). Jamming model for
the extremal optimization heuristic. J. Phys. A: Math.
Gen., 35:1109–1123.
Boettcher, S. and Paczuski, M. (1996). Ultrametricity and
memory in a solvable model of self-organized critical-
ity. Phys. Rev. E, 54:1082.
Boettcher, S. and Percus, A. G. (1999). Extremal opti-
mization: Methods derived from co-evolution. In
GECCO-99: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 825–832,
Morgan Kaufmann, San Francisco.
Boettcher, S. and Percus, A. G. (2000). Nature’s way of
optimizing. Artificial Intelligence, 119:275.
Boettcher, S. and Percus, A. G. (2001a). Extremal optimiza-
tion for graph partitioning. Phys. Rev. E, 64:026114.
Boettcher, S. and Percus, A. G. (2001b). Optimization with
extremal dynamics. Phys. Rev. Lett., 86:5211–5214.
Boettcher, S. and Percus, A. G. (2004). Extremal optimiza-
tion at the phase transition of the 3-coloring problem.
Phys. Rev. E, 69:066703.
Boettcher, S. and Sibani, P. (2005). Comparing extremal
and thermal explorations of energy landscapes. Eur.
Phys. J. B, 44:317–326.
Dall, J. and Sibani, P. (2001). Faster Monte Carlo
Simulations at Low Temperatures: The Waiting
Time Method. Computer Physics Communication,
141:260–267.
Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A.
(2005). Comparing community structure identifica-
tion. J. Stat. Mech.-Theo. Exp., P09008.
de Sousa, F. L., Ramos, F. M., Galski, R. L., and Muraoka,
I. (2004a). Generalized extremal optimization: A new
meta-heuristic inspired by a model of natural evolu-
tion. Recent Developments in Biologically Inspired
Computing.
de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2003). Gen-
eralized Extremal Optimization for solving complex
optimal design problems. Lecture Notes in Computer
Science, 2723:375–376.
de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2004b).
Heat pipe design through generalized extremal opti-
mization. Heat Transf. Eng., 25:34–45.
Duch, J. and Arenas, A. (2005). Community detection
in complex networks using Extremal Optimization.
Phys. Rev. E, 72:027104.
Fischer, K. H. and Hertz, J. A. (1991). Spin Glasses. Cam-
bridge University Press, Cambridge.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
Reading.
Gould, S. and Eldredge, N. (1977). Punctuated equilibria:
The tempo and mode of evolution reconsidered. Pale-
obiology, 3:115–151.
Hartmann, A. K. and Rieger, H., editors (2004a). New Op-
timization Algorithms in Physics. Springer, Berlin.
Hartmann, A. K. (2001). Ground-state clusters of two-
, three-, and four-dimensional ±J Ising spin glasses.
Phys. Rev. E, 63.
Hartmann, A. K. and Rieger, H. (2004b). New Optimization
Algorithms in Physics. Wiley-VCH, Berlin.
Heilmann, F., Hoffmann, K. H., and Salamon, P. (2004).
Best possible probability distribution over Extremal
Optimization ranks. Europhys. Lett., 66:305–310.
Hoffmann, K. H., Heilmann, F., and Salamon, P. (2004).
Fitness threshold accepting over Extremal Optimiza-
tion ranks. Phys. Rev. E, 70:046704.
Hoos, H. H. and St
¨
utzle, T. (2004). Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann,
San Francisco.
Iwamatsu, M. and Okabe, Y. (2004). Basin hopping with
occasional jumping. Chem. Phys. Lett., 399:396–400.
Kauffman, S. A. and Johnsen, S. (1991). Coevolution to
the edge of chaos: Coupled fitness landscapes, poised
states, and coevolutionary avalanches. J. Theor. Biol.,
149:467–505.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Op-
timization by simulated annealing. Science, 220:671–
680.
Lundy, M. and Mees, A. (1996). Convergence of an Anneal-
ing Algorithm. Math. Programming, 34:111–124.
Mang, N. G. and Zeng, C. (2008). Reference energy ex-
tremal optimization: A stochastic search algorithm
applied to computational protein design. J. Comp.
Chem., 29:1762–1771.
Menai, M. E. and Batouche, M. (2002). Extremal Opti-
mization for Max-SAT. In Proceedings of the Inter-
national Conference on Artificial Intelligence (IC-AI),
pages 954–958.
Menai, M. E. and Batouche, M. (2003a). A Bose-Einstein
Extremal Optimization method for solving real-world
instances of maximum satisfiablility. In Proceedings
of the International Conference on Artificial Intelli-
gence (IC-AI), pages 257–262.
EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION
117