A STUDY OF GENETIC PROGRAMMING VARIABLE POPULATION SIZE FOR DYNAMIC OPTIMIZATION PROBLEMS

Leonardo Vanneschi, Giuseppe Cuccu

2009

Abstract

A new model of Genetic Programming with variable size population is presented in this paper and applied to the reconstruction of target functions in dynamic environments (i.e. problems where target functions change with time). The suitability of this model is tested on a set of benchmarks based on some well known symbolic regression problems. Experimental results confirm that our variable size population model finds solutions of similar quality to the ones found by standard Genetic Programming, but with a smaller amount of computational effort.

References

  1. Banzhaf, W. and Langdon, W. B. (2002). Some considerations on the reason of bloat. Genetic Programming and Evolvable Machines, 3:81-91.
  2. Branke, J. (2001). Evolutionary Optimization in Dynamic Environments. Kluwer.
  3. Branke, J. (2003). Evolutionary approaches to dynamic optimization problems - introduction and recent trends. In Branke, J., editor, GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pages 2-4.
  4. Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2002). Advanced population diversity measures in genetic programming. In J. J. Merelo et al., editor, Parallel Problem Solving from Nature - PPSN VII, volume 2439 of LNCS, pages 341-350. Springer.
  5. Clerc, M. (2006). Particle Swarm Optimization. ISTE.
  6. de Franc¸a, F. O., Zuben, F. J. V., and de Castro, L. N. (2005). An artificial immune network for multimodal function optimization on dynamic environments. In GECCO 7805: Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 289-296, New York, NY, USA. ACM.
  7. Dempsey, I. (2007). Grammatical Evolution in Dynamic Environments. PhD thesis, University College Dublin, Ireland.
  8. Fernandes, C., Ramos, V., and Rosa, A. (2005). Varying the population size of artificial foraging swarms on time varying landscapes. In International Conference on Artificial Neural Networks: Biological Inspirations, volume 3696 of LNCS, pages 311-316. Springer.
  9. Fernández, F., Tomassini, M., and Vanneschi, L. (2003a). An empirical study of multipopulation genetic programming. Genetic Programming and Evolvable Machines, 4(1):21-52.
  10. Fernández, F., Tomassini, M., and Vanneschi, L. (2003b). Saving computational effort in genetic programming by means of plagues. In Congress on Evolutionary Computation (CEC'03), pages 2042-2049, Canberra, Australia. IEEE Press, Piscataway, NJ.
  11. Fernández, F., Vanneschi, L., and Tomassini, M. (2003c). The effect of plagues in genetic programming: A study of variable size populations. In Ryan, C., et al., editor, Genetic Programming, 6th European Conference, EuroGP2003, Lecture Notes in Computer Science, pages 317-326. Springer, Berlin, Heidelberg, New York.
  12. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
  13. Huang, C.-F. and Rocha, L. M. (2005). Tracking extrema in dynamic environments using a coevolutionary agentbased model of genotype edition. In GECCO 7805: Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 545-552, New York, NY, USA. ACM.
  14. Keijzer, M. (2003). Improving symbolic regression with interval arithmetic and linear scaling. In C. Ryan et al., editor, Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003, volume 2610 of LNCS, pages 71-83, Essex. Springer, Berlin, Heidelberg, New York.
  15. Koza, J. R. (1992). Genetic Programming. The MIT Press, Cambridge, Massachusetts.
  16. Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gpfield-guide.org.uk. (With contributions by J. R. Koza).
  17. Rand, W. and Riolo, R. (2005). The problem with a selfadaptative mutation rate in some environments: a case study using the shaky ladder hyperplane-defined functions. In GECCO 7805: Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1493-1500, New York, NY, USA. ACM.
  18. Tanev, I. (2007). Genetic programming incorporating biased mutation for evolution and adaptation of snakebot. Genetic Programming and Evolvable Machines, 8(1):39-59.
  19. Tomassini, M., Vanneschi, L., Cuendet, J., and Fernández, F. (2004). A new technique for dynamic size populations in genetic programming. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC'04), pages 486-493, Portland, Oregon, USA. IEEE Press, Piscataway, NJ.
  20. Yang, S. (2004). Constructing dynamic test environments for genetic algorithms based on problem difficulty. In Evolutionary Computation, 2004. CEC2004. Congress on, volume 2, pages 1262-1269. IEEE, Piscataway NJ, USA.
Download


Paper Citation


in Harvard Style

Vanneschi L. and Cuccu G. (2009). A STUDY OF GENETIC PROGRAMMING VARIABLE POPULATION SIZE FOR DYNAMIC OPTIMIZATION PROBLEMS . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 119-126. DOI: 10.5220/0002314701190126


in Bibtex Style

@conference{icec09,
author={Leonardo Vanneschi and Giuseppe Cuccu},
title={A STUDY OF GENETIC PROGRAMMING VARIABLE POPULATION SIZE FOR DYNAMIC OPTIMIZATION PROBLEMS},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={119-126},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002314701190126},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - A STUDY OF GENETIC PROGRAMMING VARIABLE POPULATION SIZE FOR DYNAMIC OPTIMIZATION PROBLEMS
SN - 978-989-674-014-6
AU - Vanneschi L.
AU - Cuccu G.
PY - 2009
SP - 119
EP - 126
DO - 10.5220/0002314701190126