
 
      
 Dev(Res)=])yy()yy()yy[(
2R*
i
R
i
2L*
i
L
i
2*
ii
∑
−+−+−
  
represents the residual deviance,  
      
Dev(Regr)=])yy()yy()yy[(
2R*R*
i
2**
i
2L*L*
i
∑
−Σ+−Σ+−
  
represents the regression deviance and 
       
])yy()yy()yy[(
2RR*2*2LL*
−+−+−
=
2*
)Y,Y(d
 
represents the distance between theoretical and 
empirical average values of Y. 
Synthetically the expression (6) can be written as: 
Dev(Tot) η+++=
2*
)Y,Y(nd)gr(ReDev)s(ReDev  
where:  
)].yy)(yy()yy)(yy()yy)(yy([2
)]yy)(yy()yy)(yy()yy)(yy[(2
RR*
i
R*
i
R
i
*
i
*
ii
LL*
i
L*
i
L
i
RR*R*R*
i
***
i
LL*L*L*
i
−−+−−+−−+
+−−+−−+−−=η
∑
∑
 
As the sums of deviations of each component 
from its average equal zero, then it is 
[]
=−−+−−+−−
∑
)yy)(yy()yy)(yy()yy)(yy(2
RR*R*R*
i
***
i
LL*L*L*
i
0)]yy()yy()yy()yy()yy()yy[(2
R*R*
i
RR***
i
*L*L*
i
LL*
=−−+−−+−−=
∑∑∑
 
and the amount η is reduced to 
=−−+
+−−+−−=η
∑
∑∑
)yy)(yy(2
)yy)(yy(2)yy)(yy(2
RR*
i
R*
i
R
i
*
i
*
ii
LL*
i
L*
i
L
i
.y)yy(2y)yy(2y)yy(2
y)yy(2y)yy(2y)yy(2
RR*
i
R
i
R*
i
R*
i
R
i
*
ii
*
i
*
ii
LL*
i
L
i
L*
i
L*
i
L
i
∑∑∑
∑∑∑
−−−+−−
+−+−−−=
   (7) 
Moreover, as it is 
L*
i
y =
R
i
L
i
czbxa ++ ,   
*
i
y =
ii
czbxa ++ ,   
R*
i
y =
L
i
R
i
czbxa ++  
it is also 
0y)yy(2y)yy(2y)yy(2
R*
i
R*
i
R
i
*
i
*
ii
L*
i
L*
i
L
i
=−+−+−
∑∑∑
. 
By replacing expressions of the theoretical values in 
the latter equation, we obtain  
 
=++−+
+++−+++−=
∑
∑∑
])czbxa)(yy(
)czbxa)(yy()czbxa)(yy([2
L
i
R
i
R*
i
R
i
ii
*
ii
R
i
L
i
L*
i
L
i
 
 
)]}zyzyzy()zyzyzy[(c
)]xyxyxy()xyxyxy[(b
)]yyy()yyy[(a{2
L
i
R*
ii
*
i
R
i
L*
i
L
i
R
iii
R
i
L
i
R
i
R*
ii
*
i
L
i
L*
i
R
i
R
iii
L
i
L
i
R*
i
*
i
L*
i
R
ii
L
i
Σ+Σ+Σ−Σ+Σ+Σ+
+Σ+Σ+Σ−Σ+Σ+Σ+
+Σ+Σ+Σ−Σ+Σ+Σ=
 
where 
   
()( )
0yyyyyy
R*
i
*
i
L*
i
R
ii
L
i
=Σ+Σ+Σ−Σ+Σ+Σ   
for (3), 
   
()
)
0xyxyxyxyxyxy
R
i
R*
ii
*
i
L
i
L*
i
R
i
R
iii
L
i
L
i
=Σ+Σ+Σ−Σ+Σ+Σ  
for (4), 
   
()
)
0zyzyzyzyzyzy
L
i
R*
ii
*
i
R
i
L*
i
L
i
R
iii
R
i
L
i
=Σ+Σ+Σ−Σ+Σ+Σ  
for (5). 
Finally the expression (7) can be reduced to 
=−−−−−−=η
∑∑∑
RR*
i
R
i
*
ii
LL*
i
L
i
y)yy(2y)yy(2y)yy(2
)eyeyey(2
R
i
R
i
L
i
L
Σ+Σ+Σ− .  
Note that, if the residual  deviance equals zero, also 
η and 
2*
)Y,Y(d  equal zero, because  theoretical and 
empirical average values of Y coincide for each 
observation.  
Therefore:  
- if the regression deviance equals zero, then the 
model has no forecasting ability, because the sum of 
the components of the i-th estimated fuzzy value 
equal the sum of the sample average components (i 
= 1 ,..., n). Actually, if  Dev (regr) = 0, for each i we 
have 
∑∑∑∑∑∑
++=++
R
ii
L
i
R*
i
*
i
L*
i
yyyyyy  =>  
 =>  
RLR*
i
*
i
L*
i
ynynynnynyny ++=++    => 
=> 
RLR*
i
*
i
L*
i
yyyyyy ++=++ ;      
-  if the residual deviance equals zero, the 
relationship between dependent variable and 
independent ones is well represented by the  
estimated model. In this case, the total deviance is 
entirely explained by the regression deviance. 
As usual, the largest the regression deviance is 
(the smallest the residual deviance is), the better the 
model fits data. 
5 CONCLUSIONS 
In this work, starting from a multivariate 
generalization of the Fuzzy Least Square 
Regression, we have decomposed the total deviance 
of the dependent variable according to the metric 
proposed by Diamond (1988). In particular we have 
obtained the expression of two additional 
components of variability, besides the regression 
deviance and the residual one, which arise from the 
inequality between theoretical and empirical values 
of the average fuzzy dependent variable (unlike in 
the OLS estimation procedure for crisp variables).  
REFERENCES 
Campobasso, F., Fanizzi, A., Tarantini, M., 2008, Fuzzy 
Least Square Regression, 
Annals of Department of 
Statistical Sciences, University of Bari, Italy, 229-243. 
Diamond, P. M., 1988. Fuzzy Least Square, Information 
Sciences
, 46:141-157. 
Kao, C.,Chyu, C.L., 2003, Least-squares estimates in 
fuzzy regression analysis, 
European Journal of 
Operational Research
, 148:426-435. 
Takemura, K., 2005. Fuzzy least squares regression 
analysis for social judgment study, 
Journal of 
Advanced Intelligent Computing and Intelligent 
Informatics, 9(5), 461:466. 
IJCCI 2009 - International Joint Conference on Computational Intelligence
78