Table 2: Other hardware FLC with similar fuzzy systems.
Velocity performance comparison.
MFLIPS Device Autor
50.00 Undefined (Manzoul, 1995)
50.00 Undefined (Lund, 2000)
15.38 Xilinx XC3S1500 (Deliparaschos, 2005)
11.90 Xilinx XC3S200 (Tellez, 2008)
10.00 Xilinx XC3042,64 (Kim, 1997)
9.00 Xilinx XC4008 (Hung, 1994)
8.00 Altera EPF8820 (Aranguren, 1997)
5.56 Xilinx XC3S200 (González, 2007)
3.13 Xilinx XC3S1000 (Sánchez, 2007)
2.00 Xilinx XCV600E (Gaona, 2003)
0.08 VLSI (Togai, 1986)
5 CONCLUSIONS
A fuzzy logic controller was designed and
implemented on FPGA. Specifically the FLC was
implemented on a Xilinx design board. The
architecture of the system was implemented by
arithmetic modules by using combinational logic. In
order to implement the fast FLC prototyping we
proposed a methodology design of 8 basic steps. The
digital design was development with VHDL. Each
module was proved with ModelSim XE III Starter
version. The FLC has the characteristic that the
parameters of the membership functions are variable
on line. The complete fuzzy system for a servo
motor was probed with MATLAB and ModelSim.
ACKNOWLEDGEMENTS
Research supported by the Instituto de Ciencia y
Tecnología ICyTDF funding (Award No. PICCT08-
22) and by matching funding by IPN (Award No.
SIP/DF/2007/143).
REFERENCES
Téllez, A., 2008. Fuzzy Logic Controller Architecture
using Combinatorial Logic, Instituto Politécnico
Nacional. Centro de Investigación en Computación.
Mexico City.
Patyra, M. J.; Mlynek, D.M.; “Fuzzy logic:
implementation and applications;” Wiley; 1996.
Oberman, S. F.; Flynn, M. J.; “Division Algorithms and
Implementations;” IEEE Transactions on Computers;
Aug 1997; Vol 46, No. 8; pp. 833–854.
Togai M.; Watanabe H.; “Expert system on a chip: An
engine for real–time approximate reasoning;” IEEE
Expert Syst. Mag., 1986, pp. 55–62, Volume 1.
Manzoul, M.A.; Jayabharathi, D.; “FPGA for fuzzy
controllers;” Systems, Man and Cybernetics, IEEE
Transactions, 1995, pp. 213–216, Volume 25, Issue 1.
Lund, T.; Torralba, A.; Carvajal, R.G.; “The Architecture
of an FPGA–Style Programmable Fuzzy Logic
Controller Chip;” Computer Architecture Conference,
2000. ACAC 2000. 5
th
Australasian, 31 January–3
February 2000, pp. 51–56.
Deliparaschos, K.M.; Nenedakis, F.I.; Tzafestas, S.G.; “A
fast digital fuzzy logic controller: FPGA design and
implementation;” Emerging Technologies and Factory
Automation, 2005. ETFA 2005. 10
th
IEEE
Conference, 19–22 September 2005, Volume 1.
Kim Young Dal; Hyung Lee–Kwang; “High Speed
Flexible Fuzzy Hardware for Fuzzy Information
Processing;” Systems, Man and Cybernetics, Part A,
IEEE Transactions, January 1997, pp. 45–56, Volume
27, Issue 1.
Hung, D.L.; “Custom design of a hardware fuzzy logic
controller;” Fuzzy Systems. IEEE World Congress on
Computational Intelligence, Proceedings of the Third
IEEE Conference, 26–29 June 1994, pp. 1781–1785,
Volume3.
Aranguren, G.; Barron, M.; Arroyabe, J.L.; Garcia–
Carreira, G.; “A Pipe–line Fuzzy Controller in
FPGA;” Fuzzy Systems, 1997. Proceedings of the
Sixth IEEE International Conference, 1–5 July 1997,
pp. 635–640, Volume2.
Gonzalez, J.L.; Castillo, O.; Aguilar, L.T.; “FPGA as a
Tool for Implementing Non–fixed Structure Fuzzy
Logic Controllers;” Foundations of Computational
Intelligence, 2007. FOCI 2007. IEEE Symposium, 1–5
April 2007, pp. 523–530.
Sanchez–Solano, S.; Cabrera, A.J.; Baturone, I.; Moreno–
Velo, F.J.; Brox, M.; “FPGA Implementation of
Embedded Fuzzy Controllers for Robotic Applica-
tions;” Industrial Electronics, IEEE Transac-tions,
August 2007, pp. 1937–1945, Volume 54, Issue 4.
Gaona, A.; Olea, D.; Melgarejo, M.; “Sequential Fuzzy
Inference System Based on Distributed Arithmetic;”
Computational Intelligence for Measurement Systems
and Applications, 2003. CIMSA ’03. 2003 IEEE
International Symposium, 29–31 July 2003, pp. 125–
129.
IMPLEMENTATION OF A FUZZY LOGIC SYSTEM ON A FPGA FOR A SERVO CONTROLLER
93