DYNAMIC AND EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR SENSOR SELECTION IN SENSOR NETWORKS FOR TARGET TRACKING

Nikhil Padhye, Long Zuo, Chilukurii K. Mohan, Pramod K. Varshney

2009

Abstract

When large sensor networks are applied to the task of target tracking, it is necessary to successively identify subsets of sensors that are most useful at each time instant. Such a task involves simultaneously maximizing target detection accuracy and minimizing querying cost, addressed in this paper by the application of multi-objective evolutionary algorithms (MOEAs). NSGA-II, a well-known MOEA, is demonstrated to be successful in obtaining diverse solutions (trade-off points), when compared to a ”weighted sum” approach that combines both objectives into a single cost function. We also explore an improvement, LS-DNSGA, which incorporates periodic local search into the algorithm, and outperforms standard NSGA-II on the sensor selection problem.

References

  1. Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation. John Wiley and Sons.
  2. Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, Dordrecht.
  3. Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diverisity in evolutionary multi-objective. Evolutionary Computation, 10:263- 282.
  4. Padhye, N. (2009). Comparison of archiving methods in multi-objective particle swarm optimization (mopso): Empirical study. In To appear in Proceedings of the GECCO conference companion on Genetic and evolutionary computation.
  5. Padhye, N., Juergen, J., and Mostaghim, S. (2009). Empirical comparison of mopso methods - guide selection and diversity preservation -. In Proceedings of CEC.
  6. Rajagopalan, R., Mohan, C. K., Mehrotra, K. G., and Varshney, P. K. (2005). Proc. 2nd indian int. conf. artificial intelligence. In An evolutionary multi-objective crowding algorithm (EMOCA): Benchmark test function results.
  7. Tichavsky, P., Mauravchik, C. H., and Nehoria, A. (May, 1998). Posterior cramér-rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 46(5):1386-1396.
  8. Zuo, L., Niu, R., and Varshney, P. (2006). Posterior crlb based sensor selection for target tracking in sensor networks. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, pages 1041-1044.
Download


Paper Citation


in Harvard Style

Padhye N., Zuo L., K. Mohan C. and K. Varshney P. (2009). DYNAMIC AND EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR SENSOR SELECTION IN SENSOR NETWORKS FOR TARGET TRACKING . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 160-167. DOI: 10.5220/0002324901600167


in Bibtex Style

@conference{icec09,
author={Nikhil Padhye and Long Zuo and Chilukurii K. Mohan and Pramod K. Varshney},
title={DYNAMIC AND EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR SENSOR SELECTION IN SENSOR NETWORKS FOR TARGET TRACKING},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={160-167},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002324901600167},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - DYNAMIC AND EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR SENSOR SELECTION IN SENSOR NETWORKS FOR TARGET TRACKING
SN - 978-989-674-014-6
AU - Padhye N.
AU - Zuo L.
AU - K. Mohan C.
AU - K. Varshney P.
PY - 2009
SP - 160
EP - 167
DO - 10.5220/0002324901600167