d’Avila Garcez, A., Lamb, L. C., and Gabbay, D. M.
(2008). Neural-Symbolic Cognitive Reasoning. Cog-
nitive Technologies. Springer-Verlag.
Ding, L. (1995). Neural prolog - the concepts, construction
and mechanism. In Proceedings of the 3rd Int. Confer-
ence Fuzzy Logic, Neural Nets, and Soft Computing,
pages 181–192.
Domingos, P. (2008). Markov logic: a unifying lan-
guage for knowledge and information management. In
CIKM, page 519.
G¨usgen, H. W. and H¨olldobler, S. (1992). Connectionist
inference systems. In Fronh¨ofer, B. and Wrightson,
G., editors, Parallelization in Inference Systems, pages
82–100. Springer, LNAI 590.
Hammer, B. and Hitzler, P. (2007). Perspectives of Neural-
Symbolic Integration. Studies in Computational Intel-
ligence. Springer Verlag.
Hitzler, P., H¨olldobler, S., and Seda, A. K. (2004). Logic
programs and connectionist networks. Journal of Ap-
plied Logic, 2(3):245–272.
H¨olldobler, S. and Kalinke, Y. (1994). Towards a massively
parallel computational model for logic programming.
In Proceedings of the ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages
68–77. ECCAI.
H¨olldobler, S., Kalinke, Y., and Storr, H. P. (1999). Approx-
imating the semantics of logic programs by recurrent
neural networks. Applied Intelligence, 11:45–58.
Indyk, P. (1995). Optimal simulation of automata by neu-
ral nets. In Mayr, E. and Puech, C., editors, Proc. of
the Twelfth Annual Symposium on theoretical aspect
of Computer Science, LNCS, page 337.
Kilian, J. and Siegelmann, H. (1996). The dynamic univer-
sality of sigmoidal neural networks. Information and
Computation, 128(1):48–56.
Kleene, S. (1956). Neural nets and automata. In Automata
Studies, pages 3 – 43. Princeton University Press.
Koiran, P., Cosnard, M., and M.Garzon (1994). Com-
putability with low-dimensional dynamic systems.
Theoretical Computer Science, 132:113–128.
Komendantskaya, E. (2007). Learning and Deduction in
Neural Networks and Logic. PhD thesis, Department
of Mathematics, University College Cork, Ireland.
Komendantskaya, E. (2009a). Parallel rewriting in neural
networks. In Proceedings of ICNC’09.
Komendantskaya, E. (2009b). Unification neural networks:
Unification by error-correction learning. Submitted.
Komendantskaya, E., Lane, M., and Seda, A. (2007). Con-
nectionist representation of multi-valued logic pro-
grams. In Hammer, B. and Hizler, P., editors, Perspec-
tives of Neural-Symbolic Integration, Computational
Intelligence, pages 259–289. Springer Verlag. To ap-
pear.
Lange, T. E. and Dyer, M. G. (1989). High-level inferencing
in a connectionist network. Connection Science, 1:181
– 217.
Lloyd, J. (1987). Foundations of Logic Programming.
Springer-Verlag, 2nd edition.
Markus, G. (2001). The Algebraic Mind: Integrating Con-
nectionism and Cognitive Science. Cambridge, MA:
MIT Press.
McCulloch, W. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. Bulletin of
Math. Bio., 5:115–133.
Minsky, M. (1954). Neural Nets and the Brain - Model
Problem. PhD thesis, Princeton University, Princeton
NJ.
Minsky, M. (1969). Finite and Infinite Machines.
Nauck, D., Klawonn, F., Kruse, R., and F.Klawonn (1997).
Foundations of Neuro-Fuzzy Systems. John Wiley and
Sons Inc., NY.
Neumann, J. V. (1958). The Computer and The Brain. Yale
University Press.
Pollack, J. (1987). On Connectionist Models of Natural
Language Processing. PhD thesis, Computer science
Department, University of Illinois, Urbana.
Pollack, J. (1990). Recursive distributed representations.
AIJ, 46:77–105.
Robinson, J. (1965). A machine-oriented logic based on
resolution principle. Journal of ACM, 12(1):23–41.
Shastri, L. and Ajjanagadde, V. (1993). From associations
to systematic reasoning: A connectionist representa-
tion of rules, variables and dynamic bindings using
temporal synchrony. Behavioural and Brain Sciences,
16(3):417–494.
Siegelmann, H. (1999). Neural Networks and Analog Com-
putation. Beyond the Turing Limit. Birkhauser.
Siegelmann, H. and Margenstern, M. (1999). Nine switch-
affine neurons suffice for Turing universality. Neural
Networks, 12:593–600.
Siegelmann, H. and Sontag, E. (1991). Turing computabil-
ity with neural nets. Applied Mathematics Letters,
4(6):77–80.
Siegelmann, H. and Sontag, E. (1995). On the computa-
tional power of neural nets. J. of Computers and Sys-
tem Science, 50(1):132–150.
Smolensky, P. and Legendre, G. (2006). The Harmonic
Mind. MIT Press.
Wang, J. and Domingos, P. (2008). Hybrid markov logic
networks. In AAAI, pages 1106–1111.
Zadeh, L. (1992). Interpolative reasoning in fuzzy logic and
neural network theory. Fuzzy Systems, pages 1–20.
NEURONS OR SYMBOLS - Why Does OR Remain Exclusive?
507