Carlos III-Subdirecci
´
on General de Evaluaci
´
on y Fo-
mento de la Investigaci
´
on, project id. PIO60131, and
Consejera de Salud, Servicio Andaluz de Salud, Junta
de Andaluc
´
ıa, project id. PI-0197/2007.
REFERENCES
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans.
Pattern Analysis Machine Intell., 24(5):603–619.
Dowsett, C. (2008). Using the TIME framework in wound
bed preparation. Br J Community Nurs, 13(6):S15–6,
S18, S20 passim.
Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and
Vapnik, V. (1997). Support vector regression ma-
chines. Advances in Neural Information Processing
Systems, 9:155–161.
Edsberg, L. E. (2007). Pressure ulcer tissue histology: An
appraisal of current knowledge. Ostomy/Wound Man-
agement, 53(10):40–49.
European Pressure Ulcer Advisory Panel (EPUAP) (1999).
Guidelines on treatment of pressure ulcers. EPUAP
Review, 1:31–33.
Freund, Y. and Mason, L. (1999). The alternating decision
tree algorithm. In Proceedings of the 16th Interna-
tional Conference on Machine Learning.
Gawlitta, D., Li, W., Oomens, C. W. J., Baaijens, F. P. T.,
Bader, D. L., and Bouten, C. V. C. (2007). The rela-
tive contributions of compression and hypoxia to de-
velopment of muscle tissue damage: An in vitro study.
Annals of Biomedical Engineering, 35(2):273–284.
G¨unes, U. Y. (2009). A prospective study evaluating the
Pressure Ulcer Scale for Healing to assess stage II,
stage III, and stage IV pressure ulcers. Ostomy Wound
Management, 55(5):48–52.
Gunningberg, L. (2004). Risk, prevalence and prevention
of pressure ulcers in three swedish healthcare settings.
Journal of Wound Care, 13(7):286–290.
Haykin, S. (1999). Neural networks a comprehesive foun-
dation. Prentice Hall, New Jersey, USA, second edi-
tion.
Horn, S. D., Bender, S. A., Bergstrom, N., Cook, A. S.,
Ferguson, M. L., Rimmasch, H. L., Sharkey, S. S.,
Smout, R. J., Taler, G. A., and Voss, A. C. (2002).
Description of the national pressure ulcer long-term
care study. Journal of the American Geriatrics Soci-
ety, 50(11):1816–1825.
Kottner, J., Raeder, K., Halfens, R., and Dassen, T. (2009).
A systematic review of interrater reliability of pres-
sure ulcer classification systems. Journal of Clinical
Nursing, 18(3):315–336.
Landi, F., Onder, G., Russo, A., and Bernabei, R. (2007).
Pressure ulcer and mortality in frail elderly people liv-
ing in community. Archives of Gerontology and Geri-
atrics, 44(Supplement 1):217 – 223.
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and
Euler, T. (2006). Yale: Rapid prototyping for com-
plex data mining tasks. In Ungar, L., Craven, M.,
Gunopulos, D., and Eliassi-Rad, T., editors, KDD ’06:
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 935–940, New York, NY, USA. ACM.
National Pressure Ulcer Advisory Panel, Cuddigan, J.,
Ayello, E., and Sussman, C., editors (2001). Pressure
ulcers in America: Prevalence, incidence, and impli-
cations for the future. Reston, VA: NPUAP.
Quinlan, R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers.
Redelings, M. D., Lee, N. E., and Sorvillo, F. (2005). Pres-
sure ulcers: More lethal than we thought? Advances
in Skin & Wound Care, 18(7):367–372.
Shi, H. (2007). Best-first decision tree learning. PhD thesis,
University of Waikato, Hamilton, NZ. COMP594.
Stratton, R., Green, C., and Elia, M. (2003). Disease-
related Malnutrition: An evidence-based approach
to treatment. CABI Publishing, Wallingford, United
Kingdom.
Sussman, C. and Bates-Jensen, B., editors (2001). Wound
Care: A Collaborative Practice Manual for Physi-
cal Therapists and Nurses. Lippincott Williams &
Wilkins.
Tannen, A., Dassen, T., Bours, G., and Halfens, R. (2004).
A comparison of pressure ulcer prevalence: concerted
data collection in the netherlands and germany. Inter-
national Journal of Nursing Studies, 41(6):607–612.
Veredas, F. J., Mesa, H., and Morente, L. (2009). A hybrid
learning approach to tissue recognition in wound im-
ages. International Journal of Intelligent Computing
and Cybernetics, 2(2):327–347.
Wannous, H., Treuillet, S., and Lucas, Y. (2007). Su-
pervised tissue classification from color images for a
complete wound assessment tool. In Proceedings of
the 29th Annual International Conference of the IEEE
EMBS, pages 6031–6034, Cit Internationale, Lyon,
France.
Woodbury, M. and Houghton, P. (2004). Prevalence of pres-
sure ulcers in canadian healthcare settings. Ostomy
Wound Management, 50(10):22–38.
Zhang, H. (2004). The optimality of Nave Bayes. In Proc.
17th Internat. FLAIRS Conf., pages 562–567, Florida,
USA.
Zulkowski, K. (1999). MDS+ items not contained in the
pressure ulcer RAP associated with pressure ulcer
prevalence in newly institutionalized elderly. Ostomy
Wound Management, 45(1):24–33.
HEALTHINF 2010 - International Conference on Health Informatics
12