for Traumatic Brain Injury: Proteomic Data Mining.,
Data Mining in Biomedicine , 7, 363-387
6. Cohen, H., Benjamin, J., Geva, A.B., Matar, M.A.,
Kaplan, Z., Kotler, M., 2000. Autonomic
dysregulation in panic disorder and in posttraumatic
stress disorder: Application of power spectrum
analysis of heart rate variability at rest and in response
to recollection of trauma or panic attacks. Psychiatry
Research, 96(1), 1–13.
7. Dolce,G., Riganello, F., Quintieri, M., Candelieri, A.,
Conforti, D., 2008a. Personal interaction in the
Vegetative State: a Data Mining Study. Journal of
Phycophisiology, 22(3), 150-156.
Dolce, G., Quintieri, M., Serra, S., Lagani, V., Pignolo, L.,
2008b. Clinical signs and early prognosis: a decision
tree, data minino study, Brain Ingury, 22:7, 617-623.
Dolce, G., Sazbon L., 2002. The posttraumatic vegetative
state. Stuttgard, Thieme.
Draper, K., Ponsford, J., Schönberger, M., 2007.
Psychosocial and emotional outcomes 10 years
following traumatic brain injury. Journal of Head
Trauma Rehabilitation, 22, 278–287.
Eibe, F., 2004. Machine learning with WEKA.
Department of Computer Science, University of
Waikato, New Zealand. RETRIEVED 2006 from
http://puzzle.dl.sourceforge.net/sourceforge/
weka/weka.ppt
Giacino, J.T., Ashwal, S., Childs, N., Cranford, R.,
Jennett, B., Katz, B.I., Kelly, J.P., Rosemberg, J.H.,
Whyte, J., Zafonte, R.D., Zasler, N.D., 2002. The
minimal Conscious State: Definition and Diagnostic
Criteria. Neurology, 58, 349-353.
Herskovits, H. E., Joan, P. G., 2003. Application of a data-
mining method based on Bayesian networks to lesion-
deficit analysis, NeuroImage, 19(4),1664-1673.
Holte, R.C., 1993. Very simple classification rules
perform well on most commonly used datasets.
Machine Learning, 11, 63–90.
Imberty, M. 1997. Epistemic subject, historical subject,
psychological subject: Regarding Lerdhal and
Jackendoff’s generative theory of music. In I. Deliege
& J.A. Sloboda, Perception and cognition of music.
Hove, UK. Psychology Press, 429-432
Jain, A. K., Jianchang, M., Mohiuddin, K. M., 1996.
Artificial neural networks: a tutorial. Computer, 29(3),
31-44.
Jennett, B., 2002. The vegetative state. Cambridge, UK,
University Press.
Keren, O., Yapatov, S., Radai, M.M., Elad-Yarum, R.,
Faraggi, D., Abboud, S., Ring, H., Grosswasser, Z.,
2005. Heart rate variability of patients with traumatic
brain injury during postinsult subacute period. Brain
Injury, 19, 605–611.
Laureys, S., Boly, M., 2007. What is it like to be
vegetative or minimal conscious? Current Opinion in
Neurology, 20, 609-613.
Lee, C., Yoo, S.K., Park,Y., Kim, N., Jeong, K., Lee, B.,
2005. Using Neural Network to Recognize Human
Emotionsfrom Heart Rate Variability and Skin
Resistance. Proceedings of the 2005 IEEE Engineering
in Medicine and Biology , 5, 5523-5525.
Nikki, S.R., 2004. Intense emotional response to music: A
test of the physiological arousal hypothesis.
Psychology of Music, 32, 371–388.
Niskanen, P.J., Tarvainen, M.P., Ranta-aho, P.O.,
Karjalainen, P.A., 2004. Software fo Advanced HRV
analysis. University of Kuopio Departement of
Applied Physics. Computers Methods and Programs in
Biomedicine, 76(1), 73-81
Riganello, F., Quintieri, M., Candelieri A., Conforti D.,
Dolce, G., 2008. Heart Rate response to music. An
artificial intelligence study on heathy and traumatic
brain injured subjects. Journal of Psychophysiology,
22:4, 166-174.
Robert, C., Arreto, C.D., Azerad, J., Gaudy, J.F., 2004.
Bibliometric overview of the utilization of artificial
neural networks in medicine and biology.
Scientometrics, 59(1), 117-130
Tarasti, E., 1994. A theory of musical semiotics.
Bloomington, IN. Indiana University Press.
Task Force of European Society of Cardiology and the
North American Society of Pacing and
Electrophysiology of Circulation. 1996. Heart Rate
Variability: standard of measurement, physiological
interpretation, and clinical use, Circulation, 93, 1043-
1065.
Urakawa, K., Yokoyama, K., 2005. Music can enhance
exercise-induced sympathetic dominancy assessed by
HRV. Tohoku Journal of Experimental Medicine, 205,
213–218.
van Bemmel, J.H., Munsen, M.A., 1997. Handbook of
medical informatics. Berlin: Springer-Verlag.
Wijnien, V.J., Heutinl, M., van Boxtel, G.J., Eilander,
H.J., de Gelder, B., 2006. Autonomic reactivity to
sensory stimulation is related to consciousness level
after severe traumatic brain injury. Clinical
Neurophysiology, 117, 1794-1780.
Witten, H.W., & Eibe, F., 2005. Data mining – Practical
machine learning tools and techniques with Java
implementations. San Francisco, CA. Morgan
Kaufman.
DATA MINING AND THE FUNCTIONAL RELATIONSHIP BETWEEN HEART RATE VARIABILITY AND
EMOTIONAL PROCESSING - Comparative Analyses, Validation and Application
165