that the AA obtained from the ECG often presents
QRS residua and noise (Petrutiu et al., 2006), the ob-
tained results with synthetic AA signals can be used
to justify the poor discrimination outcome reported
by other groups when direct AA organization analy-
sis was applied (Nilsson et al., 2006).
Moreover, the results are also coherent with the
highly improved paroxysmal AF termination predic-
tion reached by applying SampEn to the fundamental
waveform associated to the AA (Alcaraz and Rieta,
2009), its wavelength being the inverse of the domi-
nant atrial frequency (DAF) (Holm et al., 1998). As
this signal is obtained by applying a selective filter-
ing to the AA centered on the DAF, most part of the
undesired contaminating signals are avoided. As a
consequence, to obtain a successful AF organization
assessment through SampEn, noise and nuisance in-
terferences in the AA signal should be considerably
reduced prior to the computation of the non-linear in-
dex.
ACKNOWLEDGEMENTS
This work was supported by the projects TEC2007-
64884 from the Spanish Ministry of Science and
Innovation, PII2C09-0224-5983 and PII1C09-0036-
3237 from Junta de Comunidades de Castilla La Man-
cha and PAID-05-08 from Universidad Polit´ecnica de
Valencia.
REFERENCES
Alcaraz, R. and Rieta, J. J. (2009). Sample entropy of the
main atrial wave predicts spontaneous termination of
paroxysmal atrial fibrillation. Med Eng Phys, page
doi: 10.1016/j.medengphy.2009.05.002.
Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Lan-
gley, P., Murray, A., Rieta, J. J., Millet, J., Olsson,
S. B., Stridh, M., and S¨ornmo, L. (2006). Analysis of
surface electrocardiograms in atrial fibrillation: tech-
niques, research, and clinical applications. Europace,
8(11):911–926.
Chen, W., Zhuang, J., Yu, W., and Wang, Z. (2009). Mea-
suring complexity using FuzzyEn, ApEn, and Sam-
pEn. Med Eng Phys, 31(1):61–68.
Everett, T. H. t., Kok, L. C., Vaughn, R. H., Moorman, J. R.,
and Haines, D. E. (2001). Frequency domain algo-
rithm for quantifying atrial fibrillation organization to
increase defibrillation efficacy. IEEE Trans Biomed
Eng, 48(9):969–978.
Fuster, V., Ryd´en, L. E., Cannom, D. S., Crijns, H. J.,
Curtis, A. B., Ellenbogen, K. A., and et. al. (2006).
ACC/AHA/ESC 2006 guidelines for the management
of patients with atrial fibrillation: a report of the
American College of Cardiology/American Heart As-
sociation task force on practice guidelines and the
european society of cardiology committee for prac-
tice guidelines (writing committee to revise the 2001
guidelines for the management of patients with atrial
fibrillation): developed in collaboration with the eu-
ropean heart rhythm association and the heart rhythm
society. Circulation, 114(7):e257–e354.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C. K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet: components of
a new research resource for complex physiologic sig-
nals. Circulation, 101(23):E215–E220.
Holm, M., Pehrson, S., Ingemansson, M., S¨ornmo, L., Jo-
hansson, R., Sandhall, L., Sunemark, M., Smideberg,
B., Olsson, C., and Olsson, S. B. (1998). Non-invasive
assessment of the atrial cycle length during atrial fib-
rillation in man: introducing, validating and illustrat-
ing a new ECG method. Cardiovasc Res, 38(1):69–81.
Laguna, P. and Sornmo, L. (2000). Sampling rate and the
estimation of ensemble variability for repetitive sig-
nals. Med Biol Eng Comput, 38(5):540–546.
Nilsson, F., Stridh, M., Bollmann, A., and S¨ornmo, L.
(2006). Predicting spontaneous termination of atrial
fibrillation using the surface ECG. Med Eng Phys,
28(8):802–808.
Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn,
S., and Sahakian, A. V. (2006). Atrial fibrillation and
waveform characterization. A time domain perspec-
tive in the surface ECG. IEEE Eng Med Biol Mag,
25(6):24–30.
Pincus, S. M. and Goldberger, A. L. (1994). Physiological
time-series analysis: what does regularity quantify?
Am J Physiol, 266(4 Pt 2):H1643–H1656.
Richman, J. S. and Moorman, J. R. (2000). Physiological
time-series analysis using approximate entropy and
sample entropy. Am J Physiol Heart Circ Physiol,
278(6):H2039–H2049.
Sih, H. J., Zipes, D. P., Berbari, E. J., and Olgin,
J. E. (1999). A high-temporal resolution algorithm
for quantifying organization during atrial fibrillation.
IEEE Trans Biomed Eng, 46(4):440–450.
Stridh, M. and S¨ornmo, L. (2001). Spatiotemporal QRST
cancellation techniques for analysis of atrial fibrilla-
tion. IEEE Trans Biomed Eng, 48(1):105–111.
Stridh, M., S¨ornmo, L., Meurling, C. J., and Olsson, S. B.
(2001). Characterization of atrial fibrillation using
the surface ECG: time-dependent spectral properties.
IEEE Trans. Biomed. Eng, 48(1):19–27.
Yu, Small, Harrison, and Diks (2000). Efficient implemen-
tation of the gaussian kernel algorithm in estimating
invariants and noise level from noisy time series data.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip
Topics, 61(4 Pt A):3750–3756.
BIOSIGNALS 2010 - International Conference on Bio-inspired Systems and Signal Processing
396