ROBUST METHODS FOR ROBOT LOCALIZATION UNDER CHANGING ILLUMINATION CONDITIONS - Comparison of Different Filtering Techniques

Lorenzo Fernández Rojo, Luis Payá, Oscar Reinoso, Arturo Gil, Miguel Juliá

2010

Abstract

The use of omnidirectional systems provides us with rich visual information that allows us to create appearance-based dense maps. This map can be composed of several panoramic images taken from different positions in the environment. When the map contains only visual information, it will depend heavily on the conditions of the environment lighting. Therefore we get different visual information depending on the time of day when the map is created, the state of artificial lighting in the environment, or any other circumstance that causes a change in the illumination of the scene. To obtain a robust map against changes in the illumination of the environment we apply different filters on the panoramic images. After that, we use some compression methods that allow us to reduce the amount of information stored. We have conducted a comprehensive experimentation to study which type of filter best adapts to changing lighting conditions.

References

  1. Adini, Y., Moses, I., Ullman, S., 1997. Face recognition: the problem of compensating for changes in illumination direction. In IEEE Trans.Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 721-732.
  2. Bischof, H., Wildenauer, H., Leonardis, A., 2004. Illumination intensitive recognition using eigenspaces. In ELSEVIER Computer Vision and Image Understanding, Vol. 95, No. 1, pp. 86-104.
  3. De Araujo, V., Maia, R., D'Angelo, M., D'Angelo, G., 2006. Automatic Plate Detection using genetic algorithm. In Proc. World Scientific and Engineering Academy and Society, pp. 43-48.
  4. Faraid, H., Adelson, E., 1999. Separating reflections and lighting using independent components análisis. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition. Vol. 1, pp. 1262-1267.
  5. Gil, A., Martinez, O., Ballesta, M., Reinoso, O., 2009. A comparative evaluation of interest point detectors and local descriptors for visual SLAM. In SPRINGER Machine Vision and Applications.
  6. Gonzalez, R.C., Woods, R.E., 1993. Digital Image Processing. Ed. Addison Wesley.
  7. Jogan, M., Leonardis, A., 2000. Robust Localization Using Eigenspace of Spinning-Images. In Proc. IEEE Workshop on Omnidirectional Vision, Hilton Head Island, USA, pp. 37-44, IEEE.
  8. Kröse, B., Bunschoten, R., Hagen, S., Terwijn, B. Vlassis, N., 2004. Household robots: Look and learn. In IEEE Robotics & Automation magazine. Vol. 11, No. 4, pp. 45-52.
  9. Menegatti, E.; Maeda, T. Ishiguro, H., 2004. Image-based memory for robot navigation using properties of omnidirectional images. In Robotics and Autonomous Systems. Vol. 47, No. 4, pp. 251-276.
  10. Murase, H., Nayar, S., 1994. Illumination planning for object recognition using parametric eigenspaces. In IEEE Trans. Pattern Anal. Mach. Intell., Vol 16, pp. 1219-1227.
  11. Payá, L., Reinoso, O., Gil, A., Sogorb. J., 2008. Multirobot route following using omnidirectional vision and appearance-based representation of the environment. In Lecture Notes in Artificial Intelligence. Vol. 5271, pp. 680-687 Springer.
  12. Payá, L., Fernández, L., Reinoso, O., Gil, O., Úbeda, D., 2009. Appearance-based dense maps creation. Comparison of compression techniques with panoramic images. In Int. Conf. on Informatic in Control, Automation and Robotic, Vol. 6, pp. 238-246.
  13. Rossi, F., Ranganathan, A., Dellaert, F., Menegatti, E., 2008. Toward topological localization with spherical Fourier transform and uncalibrated camera. In Proc. Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots. Venice (Italy), pp. 319-330.
  14. Ueonara, M., Kanade, T, 1998. Optimal approximation of uniformly rotated images: relationship between Karhunen-Loeve expansion and Discrete Cosine Transform. In IEEE Trans. Image Processing. Vol. 7, No. 1, pp. 116-119.
Download


Paper Citation


in Harvard Style

Fernández Rojo L., Payá L., Reinoso O., Gil A. and Juliá M. (2010). ROBUST METHODS FOR ROBOT LOCALIZATION UNDER CHANGING ILLUMINATION CONDITIONS - Comparison of Different Filtering Techniques . In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-674-021-4, pages 223-228. DOI: 10.5220/0002705002230228


in Bibtex Style

@conference{icaart10,
author={Lorenzo Fernández Rojo and Luis Payá and Oscar Reinoso and Arturo Gil and Miguel Juliá},
title={ROBUST METHODS FOR ROBOT LOCALIZATION UNDER CHANGING ILLUMINATION CONDITIONS - Comparison of Different Filtering Techniques},
booktitle={Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2010},
pages={223-228},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002705002230228},
isbn={978-989-674-021-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - ROBUST METHODS FOR ROBOT LOCALIZATION UNDER CHANGING ILLUMINATION CONDITIONS - Comparison of Different Filtering Techniques
SN - 978-989-674-021-4
AU - Fernández Rojo L.
AU - Payá L.
AU - Reinoso O.
AU - Gil A.
AU - Juliá M.
PY - 2010
SP - 223
EP - 228
DO - 10.5220/0002705002230228