REFERENCES
Kennedy, J., Eberhart, R., 1995. Particle Swarm
Optimization. In Proceedings of IEEE International
Conference on Neural Networks, Perth, Australia, vol.
4, pp. 1942-1948.
Mohan, C., Shanker, K., 1994. A Controlled Random
Search Technique for Global Optimization using
Quadratic Approximation. Asia-Pacific Journal of
Operational Research, vol. 11, pp. 93-101.
Omran, M., 2009. CODEQ: An Effective Meta-heuristic
for Continuous Global Optimization. Under revision.
Omran, M., al-Sharhan, S., 2009. Optimization of Discrete
Values using Recent Variants of Differential
Evolution. In the proceedings of the 4
th
IASTED
international Conference on Computational
Intelligence, Hawaii, USA.
Omran, M., Engelbrecht, A., 2009. Free Search
Differential Evolution. Accepted for publication in
proceedings of the IEEE Congress on Evolutionary
Computation (CEC’2009), Norway.
Omran, M., Salman, A., 2009. Constrained Optimization
using CODEQ. Chaos, Solitons & Fractals Journal,
Elsevier, vol. 42(2), pp. 662-668.
Pant, M., Thangaraj, R., Singh, V., 2007. A New Particle
Swarm Optimization with Quadratic Interpolation. In
proceedings of the International Conference on
Computational Intelligence and Multimedia, India,
vol. 1, pp. 55-60.
Pant, M., Thangaraj, R., Singh, V., 2008. A New
Differential Evolution Algorithm for Solving Global
Optimization Problems. In the proceedings of the
International Conference on Advanced Computer
Control, Thailand, pp. 388-392.
Storn, R., Price, K., 1995. Differential Evolution – A
Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Spaces. Technical
Report TR-95-012, International Computer Science
Institute, Berkeley, CA.
Tizhoosh, H., 2005. Opposition-based Learning: A New
Scheme for Machine Intelligence. In Proceedings Int.
Conf. Comput. Intell. Modeling Control and Autom,
vol. I, pp. 695—701.
Wilcoxon, F., 1945. Individual Comparisons by Ranking
Methods. Biometrics, vol. 1, pp. 80-83.
Yin, P., Glover, F., Laguna, M., Zhu, J., 2009. Cyber
Swarm Algorithms – Improving particle swarm
optimization using adaptive memory strategies.
European Journal of Operation Research,
doi:10.1016/j.ejor.2009.03.035.
ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence
270