5
5,5
6
6,5
7
7,5
525 575 625 675 725 775 825 875 925
SOP
ID
Generation: 500 Generation: 1000 Generation: 1500 Generation: 2000
Figure 7: Population average fitness for 1ycc, 36 peaks.
The main drawback of this method, as it is
implemented, is its dependence of previously
knowing the expected number of peaks in the search
space. This problem may be overcome by trying to
identify the number of peaks in the population
dynamically, or by using a different approach when
computing the nich radius, σ
share
.
Alternative objectives, such as minimizing the
number of gaps, may be used instead of maximizing
the identity. However, this kind of approach may
have poor results when several gaps are needed to
maximize the similarity among the sequences. A
possible solution is to increase the complexity of the
problem by optimizing three objectives: maximize
identity and sum-of-pairs scores, and minimize the
number of gaps in the alignment.
REFERENCES
Anbarasu, L. A., Narayanasamy, P. & Sundararajan, V.
(2000) Multiple molecular sequence alignment by
island parallel genetic algorithm. Current Science, 78,
858-863.
Chellapilla, K. & Fogel, G. B. (1999) Multiple sequence
alignment using evolutionary programming. IN
Angeline, P. J., Michalewicz, Z., Schoenauer, M.,
Yao, X. & Zalzala, A. (Eds.) Proceedings of the 1999
Congress on Evolutionary Computation. Washington
DC, USA, IEEE Press.
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978) A
Model of Evolutionary Change in Proteins. Atlas of
Protein Sequence and Structure. National Biomedical
Research Foundation.
De Jong, K. (1988) Learning with genetic algorithms: An
overview. Mach Learning, 3, 121-138.
Goldberg, D. E. (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning Reading, MA,
Addison-Wesley Publishing Company.
Goldberg, D. E. & Richardson, J. (1987) Genetic
algorithms with sharing for multimodal function
optimization. Proceedings of the Second International
Conference on Genetic Algorithms on Genetic
algorithms and their application. Cambridge,
Massachusetts, United States, L. Erlbaum Associates
Inc.
Holland, J. H. (1975) Adaptation in natural and artificial
systems, Univ Mich Press. Ann Arbor.
Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994) A niched
Pareto genetic algorithm for multiobjective
optimization. Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence 1, 82-
87.
Horng, J.-T., Lin, C.-M., Liu, B.-J. & Kao, C.-Y. (2000)
Using Genetic Algorithms to Solve Multiple Sequence
Alignments. IN Whitley, L. D., Goldberg, D. E.,
Cantu-Paz, E., Spector, L., Parmee, I. C. & Beyer, H.-
G. (Eds.) Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000). Las Vegas,
Nevada, USA, Morgan Kaufmann.
Horng, J., Wu, L., Lin, C. & Yang, B. (2005) A genetic
algorithm for multiple sequence alignment. Soft
Computing, 9, 407-420.
Lassmann, T. & Sonnhammer, E. L. L. (2002) Quality
assessment of multiple alignment programs. FEBS
Letters, 529, 126-130.
Michalewicz, Z. (1996) Genetic algorithms + data
structures = evolution programs - Third, Revised and
Extended Edition, Springer.
Notredame, C. & Higgins, D. G. (1996) SAGA: sequence
alignment by genetic algorithm. Nucleic Acids
Research, 24, 1515-1524.
Notredame, C., O'Brien, E. A. & Higgins, D. G. (1997)
RAGA: RNA sequence alignment by genetic
algorithm. Nucleic Acids Research, 25, 4570-4580.
Pal, S. K., Bandyopadhyay, S. & Ray, S. S. (2006)
Evolutionary computation in bioinformatics: A
review. IEEE Transactions on Systems Man and
Cybernetics Part C-Appl and Rev, 36, 601-615.
Shir, O. M. & Back, T. (2006) Niche radius adaptation in
the cma-es niching algorithm. Lecture Notes in
Computer Science, 4193, 142.
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A.
& Vega Rodríguez, M. Á. (2007) Alineamiento
Múltiple de Secuencias utilizando Algoritmos
Genéticos: Revisión. Segundo Congreso Español de
Informática. Zaragoza, Spain, CEDI.
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A.
& Vega Rodríguez, M. Á. (2008) AlineaGA: A
Genetic Algorithm for Multiple Sequence Alignment.
IN Nguyen, N. T. & Katarzyniak, R. (Eds.) New
Challenges in Applied Intelligence Technologies.
Springer-Verlag.
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A.
& Vega Rodríguez, M. Á. (2009) AlineaGA - A
Genetic Algorithm with Local Search Optimization for
Multiple Sequence Alignment. Applied Intelligence, 1-
9.
Thompson, J. D., Plewniak, F. & Poch, O. (1999)
BAliBASE: a benchmark alignment database for the
evaluation of multiple alignment programs.
Bioinformatics, 15, 87-88.
Wang, C. & Lefkowitz, E. J. (2005) Genomic multiple
sequence alignments: refinement using a genetic
algorithm. BMC Bioinformatics, 6.
A NICHED PARETO GENETIC ALGORITHM - For Multiple Sequence Alignment Optimization
329