Billing, E. A. and Hellstrm, T. (2008b). Formalising learn-
ing from demonstration. Technical report, UMINF
0810, Department of Computing Science, Ume Uni-
versity.
Brooks, R. A. (1986). A robust layered control system for
a mobile robot. In IEEE Journal of Robotics and Au-
tomation RA-2, volume 1, pages 14–23.
Brooks, R. A. (1990). Elephants don’t play chess. Robotics
and Autonomous Systems, 6:3–15.
Brooks, R. A. (1991a). Intelligence without reason. Pro-
ceedings, 1991 Int. Joint Conf. on Artificial Intelli-
gence, pages 569–595.
Brooks, R. A. (1991b). New approaches to robotics. Sci-
ence, 253(13):1227–1232.
Calinon, S., Guenter, F., and Billard, A. (2007). On
learning, representing and generalizing a task in a
humanoid robot. IEEE Transactions on Systems,
Man and Cybernetics, Part B. Special issue on robot
learning by observation, demonstration and imitation,
37(2):286–298.
Delson, N. and West, H. (1994). Robot programming by hu-
man demonstration: The use of human inconsistency
in improving 3D robot trajectories. In Proceedings of
the IEEE/RSJ/GI International Conference on Intelli-
gent Robots and Systems ’94. Advanced Robotic Sys-
tems and the Real World, IROS ’94., volume 2, pages
1248–1255, Munich, Germany.
Demiris, J. and Hayes, G. R. (2002). Imitation as a
dual-route process featuring predictive and learning
components: a biologically plausible computational
model. In Imitation in animals and artifacts, pages
327–361. MIT Press.
Demiris, Y. and Johnson, M. (2003). Distributed, predictive
perception of actions: a biologically inspired robotics
architecture for imitation and learning. Connection
Science, 15(4):231–243.
Demiris, Y. and Simmons, G. (2006). Perceiving the un-
usual: Temporal properties of hierarchical motor rep-
resentations for action perception. Neural Networks,
19(3):272–284.
Feder, M. and Merhav, N. (1994). Relations between en-
tropy and error probability. IEEE Transactions on In-
formation Theory, 40(1):259–266.
Friston, K. J. (2003). Learning and inference in the brain.
Neural Networks: The Official Journal of the In-
ternational Neural Network Society, 16(9):1325–52.
PMID: 14622888.
George, D. (2008). How the Brain might work: A Hierar-
chical and Temporal Model for Learning and Recog-
nition. PhD thesis, Stanford University, Department
of Electrical Engineering.
George, D. and Hawkins, J. (2005). A hierarchical bayesian
model of invariant pattern recognition in the visual
cortex. In Neural Networks, 2005. IJCNN ’05. Pro-
ceedings. 2005 IEEE International Joint Conference
on, volume 3, pages 1812–1817 vol. 3.
Guenter, F., Hersch, M., Calinon, S., and Billard, A. (2007).
Reinforcement learning for imitating constrained
reaching movements. RSJ Advanced Robotics, Spe-
cial Issue on Imitative Robots, 21(13):1521–1544.
Haruno, M., Wolpert, D. M., and Kawato, M. (2003). Hier-
archical MOSAIC for movement generation. In Inter-
national Congress Series 1250, pages 575– 590. Else-
vier Science B.V.
Haruno, M., Wolpert, D. M., and Kawato, M. M. (2001).
MOSAIC model for sensorimotor learning and con-
trol. Neural Comput., 13(10):2201–2220.
Hawkins, J. and Blakeslee, S. (2002). On Intelligence.
Times Books.
Jordan, M. and Rumelhart, D. (1992). Forward models: Su-
pervised learning with a distal teacher. Cognitive Sci-
ence: A Multidisciplinary Journal, 16(3):354, 307.
K-Team (2007). Khepera robot. http://www.k-team.com.
Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hier-
archical neural-network model for control and learn-
ing of voluntary movement. Biological Cybernetics,
57(3):169–185. PMID: 3676355.
Lee, T. and Mumford, D. (2003). Hierarchical bayesian in-
ference in the visual cortex. J Opt Soc Am A Opt Im-
age Sci Vis, 20(7):1448, 1434.
Miall, R. C. and Wolpert, D. M. (1996). Forward mod-
els for physiological motor control. Neural Netw.,
9(8):1265–1279.
Nehaniv, C. L. and Dautenhahn, K. (2000). Of humming-
birds and helicopters: An algebraic framework for
interdisciplinary studies of imitation and its applica-
tions. In Demiris, J. and Birk, A., editors, Learning
Robots: An Interdisciplinary Approach, volume 24,
pages 136–161. World Scientific Press.
Pfeifer, R. and Scheier, C. (1997). Sensory-motor coordi-
nation: the metaphor and beyond. Robotics and Au-
tonomous Systems, 20(2):157–178.
Pfeifer, R. and Scheier, C. (2001). Understanding Intelli-
gence. MIT Press. Cambrage, Massachusetts.
Poggio, T. and Bizzi, E. (2004). Generalization in vision
and motor control. Nature, 431(7010):768–774.
Riesenhuber, M. and Poggio, T. (1999). Hierarchical mod-
els of object recognition in cortex. Nature Neuro-
science, 2(11):1019–25. PMID: 10526343.
Rohrer, B. (2007). S-Learning: a biomimetic algorithm
for learning, memory, and control in robots. In CNE
apos;07. 3rd International IEEE/EMBS Conference
on Natural Engineering, pages 148 – 151, Kohala
Coast, Hawaii.
Rohrer, B. (2009). S-learning: A model-free, case-based
algorithm for robot learning and control. In Eighth
International Conference on Case-Based Reasoning,
Seattle Washington.
Rohrer, B., Bernard, M., Morrow, J. D., Rothganger, F., and
Xavier, P. (2009). Model-free learning and control in
a mobile robot. In Fifth International Conference on
Natural Computation, Tianjin, China.
Rohrer, B. and Hulet, S. (2006a). BECCA - a brain emu-
lating cognition and control architecture. Technical
report, Cybernetic Systems Integration Department,
ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence
70