Hamacher, K. (2008). Relating sequence evolution of
HIV1-protease to its underlying molecular mechanics.
Gene, 422:30–36.
Hamacher, K. and McCammon, J. A. (2006). Computing
the amino acid specificity of fluctuations in biomolec-
ular systems. J. Chem. Theory Comput., 2(3):873–
878.
Higgins, D. G. and Sharp, P. M. (1988). Clustal: a pack-
age for performing multiple sequence alignment on a
microcomputer. Gene, 73(1):237–244.
Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD
– Visual Molecular Dynamics. Journal of Molecular
Graphics, 14:33–38.
Lund, O., Nielsen, M., Lundegaard, C., and Brunak, C.
K. S. (2005). Immunological Bioinformatics. MIT
Press, Cambridge.
Pan, C., Kim, J., Chen, L., Wang, Q., and Lee, C. (2007).
The hiv positive selection mutation database. Nuc.
Acids Res., 35:D371–D375(1).
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard,
J., and Ho, D. (1996). HIV-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral gener-
ation time. Science, 271:1582–1586.
Perryman, A. L., Lin, J.-H., and McCammon, J. A. (2006).
Restrained molecular dynamics simulations of hiv-1
protease: The first step in validating a new target for
drug design. Biopolymers, 82(3):272–284.
Prajapati, D. G., Ramajayam, R., Yadav, M. R., and Girid-
har, R. (2009). The search for potent, small molecule
nnrtis: A review. Bioorganic & Medicinal Chemistry,
17(16):5744–5762.
Reiling, K., Endres, N., Dauber, D., Craik, C., and Stroud,
R. (2002). Anisotropic dynamics of the JE-2147-
HIV protease complex: Drug resistance and thermo-
dynamic binding mode examined in a 1.09 a structure.
Biochemistry, 41:4582.
Richman, D., Margolis, D., Delaney, M., Greene, W. C.,
Hazuda, D., and Pomerantz, R. J. (2009). The chal-
lenge of finding a cure for HIV infection. Science,
323:1304–1307.
Rong, L., Gilchrist, M. A., Feng, Z., and Perelson, A. S.
(2007). Modeling within-host HIV-1 dynamics and
the evolution of drug resistance: Trade-offs between
viral enzyme function and drug susceptibility. J. Theo.
Biol., 247:804–818.
Sarafianos, S. G., Das, K., Hughes, S. H., and Arnold,
E. (2004). Taking aim at a moving target: design-
ing drugs to inhibit drug-resistant hiv-1 reverse tran-
scriptases. Current Opinion in Structural Biology,
14(6):716–30.
Schreck, T., Bremm, S., Held, S., and Hamacher, K. (2009).
to be published.
Shannon, C. E. (1951). Prediction and entropy of printed
english. The Bell System Technical Journal, 30:50–
64.
Stone, J. (1998). An Efficient Library for Parallel Ray Trac-
ing and Animation. Master’s thesis, Computer Science
Department, University of Missouri-Rolla.
Thompson, J., Higgins, D., and Gibson, T. (1994).
CLUSTAL W: improving the sensitivity of progres-
sive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res., 22:4673–4680.
Trylska, J., Tozzini, V., Chang, C., and McCammon, J. A.
(2007). HIV-1 protease substrate binding and product
release pathways explored with coarse-grained molec-
ular dynamics. Biophys. J., 92:4179–4187.
Tsygankov, A. Y. (2009). Current developments in anti-
HIV/AIDS gene therapy. Curr Opin Investig Drugs,
10(2):137–149.
W.H. Press et al (1995). Numerical Recipies in C. Cam-
bridge University Press, Cambridge.
Wlodawer, A. and Erickson, J. (1993). Structure-based
inhibitors of HIV-1 protease. Annu. Rev. Biochem.,
62(1):543–585.
Yoshimura, K., Kato, R., Yusa, K., Kavlick, M. F., Maroun,
V.and Nguyen, A., Mimoto, T., Ueno, T., Shintani, M.,
Falloon, J., Masur, H., Hayashi, H., Erickson, J., and
Mitsuya, H. (1999). JE-2147: A dipeptide protease
inhibitor (PI) that potently inhibits multi-PI-resistant
HIV-1. Proc. Natl. Acad. Sci., 96:8675–8680.
CO-EVOLUTION IN HIV ENZYMES
47