PRESELECTION OF NEUROSTIMULATION WAVEFORMS FOR VISUAL PROSTHESES USING GENETIC ALGORITHMS

Samuel Romero, Alberto Guillén, Cristóbal J. Carmona, C. Morillas, F. Pelayo, H. Pomares

2010

Abstract

Among the variety of approaches for developing therapies for the blind, electrical neurostimulation of the visual pathways seems to be a promising choice. Delivering bi-phasic bioelectric pulses to the nerves implies the selection of values for a number of parameters within a wide range. This needs to be done for every implanted electrode, and for every patient. Nowadays, electrode arrays can include up to one hundred channels, and we expect to raise to thousands of them in a near future. This unavoidable task becomes extremely time-consuming both for the researcher and for the patient. Therefore, in order to reduce the number of tests to be carried out in vivo, we propose the use of multi-objective genetic algorithms that can provide a limited set of candidate waveforms to be tried.

References

  1. Casillas, J. and Carse, B. (2009). Special issue on Genetic Fuzzy Systems: Recent Developments and Future Directions. Soft Computing, 13(5):417-418.
  2. Cordón, O., Alcalá, R., Alcalá-Fdez, J., and Rojas, I. (2007). Special Issue on Genetic Fuzzy Systems: What's Next? Editorial, IEEE Transactions on Fuzzy Systems, 15(4):533-535.
  3. Deb, K., Pratap, A., Agrawal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation, 6(2):182-197.
  4. Dobelle, W. H. (2000). Artificial Vision for the Blind by Connecting a Television Camera to the Visual Cortex. Asaio J, 46:3-9.
  5. Fernández, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., and Merabet, L. (2005a). Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. Journal of Neural Engineering, 2(4).
  6. Fernández, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., and Merabet, L. (2005b). Development of a cortical visual neuroprosthesis for the blind: The relevance of neuroplasticity. J. of Neural Eng, 4:R1- R12.
  7. Golberg, D. (1989). Genetic Algorithms in search, optimization and machine learning. Addison-Wesley.
  8. Guillen, A., Pomares, H., Rojas, I., González, J., Valenzuela, O., and Prieto, B. (2009). Parallel Multiobjective Memetic RBFNNs Design and Feature Selection for Function Approximation Problems. Neurocomputing.
  9. Guillén, A., Rojas, I., González, J., Pomares, H., Herrera, L. J., and Fernández, F. (2006). Multiobjective RBFNNs Designer for Function Approximation: An Application for Mineral Reduction. Lecture Notes in Computer Science, 4221:511-520.
  10. Humayun, M. S. (2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res, 43(24):2573-2581.
  11. Isibuchi, H. (2007). Multiobjective genetic fuzzy systems: review and future research directions. In FUZZIEEE'07, pages 913-918, London.
  12. Miller, B. L. and Goldberg, D. E. (1995). Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex System, 9:193-212.
  13. Normann, R. A., Greger, B. A., House, P., Romero, S. F., Pelayo, F., and Fernandez, E. (2009). Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng., 6(4):049802+.
  14. Romero, S. F., Morillas, C. A., Pelayo, F. J., and Fernández, E. (2008). Computer-controlled neurostimulation for a visual implant. In BIODEVICES (1), pages 84-91.
  15. Schmidt, E., Bak, M., Hambrecht, F., Kufta, C., O'Rourke, D., and Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119:507-522.
  16. Troyk, P. e. a. (2003). A Model for Intracortical Visual Prosthesis Research. Artif. Organs, 11:1005-1015.
  17. Veraart, C. (1998). Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res, 813:181-186.
Download


Paper Citation


in Harvard Style

Romero S., Guillén A., J. Carmona C., Morillas C., Pelayo F. and Pomares H. (2010). PRESELECTION OF NEUROSTIMULATION WAVEFORMS FOR VISUAL PROSTHESES USING GENETIC ALGORITHMS . In Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010) ISBN 978-989-674-017-7, pages 191-194. DOI: 10.5220/0002744301910194


in Bibtex Style

@conference{biodevices10,
author={Samuel Romero and Alberto Guillén and Cristóbal J. Carmona and C. Morillas and F. Pelayo and H. Pomares},
title={PRESELECTION OF NEUROSTIMULATION WAVEFORMS FOR VISUAL PROSTHESES USING GENETIC ALGORITHMS},
booktitle={Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010)},
year={2010},
pages={191-194},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002744301910194},
isbn={978-989-674-017-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010)
TI - PRESELECTION OF NEUROSTIMULATION WAVEFORMS FOR VISUAL PROSTHESES USING GENETIC ALGORITHMS
SN - 978-989-674-017-7
AU - Romero S.
AU - Guillén A.
AU - J. Carmona C.
AU - Morillas C.
AU - Pelayo F.
AU - Pomares H.
PY - 2010
SP - 191
EP - 194
DO - 10.5220/0002744301910194