trapezium affect the trajectory of the thumb and it’s
TCP workspace.
The fact, that the rotation centre lies deeper in
the radial carpal column corresponds to an extended
workspace of the thumb. In the artificial thumb pre-
sented an STT joint with 1 active DOF and 1 pas-
sive, underactuated DOF is applied. As a result, the
thumb’s workspace is enlarged and biomechanically
more adequate. Some examples for extreme postures
of the thumb are given in Fig. 5 a),b) and d).
In combination with robust and forceful finger
kinematics (Franke and Bogdan, 2009) biomechani-
cally effective hand prostheses can be realised. We re-
sume, that these properties are excellent qualifications
for applications in the field of future hand prosthe-
ses, for example for biologically inspired neural pros-
theses (Bogdan and Franke, 2001) with an extended
range of performance.
ACKNOWLEDGEMENTS
The authors would like to thank Dr. Essers and Priv.
Doz. Dr. Jantea for providing further details about
their experimental setup.
REFERENCES
Bogdan, M. and Franke, M. (2001). Real time processing
of nerve signals for controlling an artificial hand. In
Proceedings of the IASTED Conference on Applied In-
formatics 2001. IASTED.
Butterfass, J., Grebenstein, M., and Hirzinger, H. L. G.
(2001). DLR hand II: Next generation of a dexterous
robot hand. In Proceedings of the 2001 IEEE Interna-
tional Conference on Robotics & Automation. IEEE
Robotics & Automation Society.
Cooney, W., Lucca, M. J., Chao, E. Y., and Lin-
scheid, R. L. (1981). The kinesiology of the thumb
trapeziometacarpal joint. In The Journal of Bone and
Joint Surgery. Journal of Bone and Joint Surgery, Inc.
Dornblueth, O., Zink, C., and Hildebrandt, H. (1998).
Pschyrembel - Klinisches Woerterbuch ( in German ).
Walter de Gruyter, Berlin, 52nd edition.
Essers, F. (2006). Untersuchung zur Kinematik im
Bereich des Scapho-Trapezio-Trapezoidalgelenks der
menschlichen Hand bei Zirkumduktion des Daumens
( in German ). F. Essers, Duesseldorf, 1st edition.
Franke, M. and Bogdan, M. (2009). A new lightweight,
robust and forceful finger for an artificial limb. In
Proceedings of the 2009 World Congress on Medical
Physics and Biomedical Engineering. Springer.
Frisch, H. (2001). Programmierte Untersuchung des Be-
wegungsapparates. Chirodiagnostik ( in German ).
Springer, Berlin, 3rd edition.
Liu, H., Wu, K., Meusel, P., Hirzinger, G., Jin, M., Liu, Y.,
Fan, S., Lan, T., and Chen, Z. (2007). A dexterous hu-
manoid five-fingered robotic hand. In Proceedings of
the 17th IEEE International Symposium on Robot and
Human Interactive Communication. IEEE Robotics &
Automation Society.
Lovchik, C. and M.A.Diftler (1999). The robonaut hand:
a dexterous robot hand for space. In Proceedings of
1999 IEEE International Conference on Robotics and
Automation. IEEE Robotics & Automation Society.
McKenzie, C. (1994). The Grasping Hand. Elsevier Sci-
ence, Amsterdam, 1st edition.
Rauber, A. and Kopsch, F. (2003). Anatomie des Menschen,
Band 1, Bewegungsapparat ( in German ). Toendury,
Berlin, 3rd edition.
Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R.,
and Bretthauer, G. (2005). A lightweight multifunc-
tional prosthetic hand. In Robotica. IEEE Robotics &
Automation Society.
Speckmann, E. J. and Wittkowski, W. (1998). Bau und
Funktionen des menschlichen Koerpers. Praxisorien-
tierte Anatomie und Physiologie ( in German ). Urban
& Schwarzenberg, Munic, 18th edition.
Wilkinson, D., Weghe, M. V., and Matsuoka, Y. (2003). An
extensor mechanism for an anatomical robotic hand.
In Proceedings of the 2003 IEEE International Con-
ference on Robotics and Automation. IEEE Robotics
& Automation Society.
BIODEVICES 2010 - International Conference on Biomedical Electronics and Devices
210