Table 3: EM: Dice coefficients for CSF and white matter for
the EM clustering algorithm. Confidence values calculated
at 99% using student-t distribution. White matter ground
truth is missing for datasets Sub1, Sub2 and Sub3 and so
these do not appear.
EM
Dataset CSF WM
Sub1 .86
Sub2 .8
Sub3 .73
Z01 .7 .79
Z02 .68 .9
Z03 .75 .74
Z04 .76 .72
Z11 .83 .8
Z14 .78 .76
Z16 .81 .7
Z17 .76 .87
Z19 .71 .76
Average .76 ± .04 .78 ± .08
REFERENCES
Blatter, D., Bigler, E., Gale, S., Johnson, S., Anderson, C.,
Burnett, B., Parker, N., Kurth, S., and Horn, S. (1995).
Quantitative volumetric analysis of brain MR: norma-
tive database spanning 5 decades of life. American
Journal of Neuroradiology, 16(2):241–251.
Burton, E., Karas, G., Paling, S., Barber, R., Williams, E.,
Ballard, C., McKeith, I., Scheltens, P., Barkhof, F.,
and O’Brien, J. (2002). Patterns of cerebral atrophy in
dementia with Lewy bodies using voxel-based mor-
phometry. Neuroimage, 17(2):618–630.
Busatto, G., Garrido, G., Almeida, O., Castro, C., Camargo,
C., Cid, C., Buchpiguel, C., Furuie, S., and Bottino, C.
(2003). A voxel-based morphometry study of tempo-
ral lobe gray matter reductions in Alzheimers disease.
Neurobiology of aging, 24(2):221–231.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans-
actions on pattern analysis and machine intelligence,
pages 603–619.
Crum, W. (2007). Spectral Clustering and Label Fusion For
3D Tissue Classification: Sensitivity and Consistency
Analysis.
Dempster, A., Laird, N., Rubin, D., et al. (1977). Maxi-
mum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society. Se-
ries B (Methodological), 39(1):1–38.
Fazekas, F., Barkhof, F., Wahlund, L., Pantoni, L., Erkin-
juntti, T., Scheltens, P., and Schmidt, R. (2002). CT
and MRI rating of white matter lesions. Cerebrovas-
cular Diseases, 13:31–36.
Good, C., Johnsrude, I., Ashburner, J., Henson, R., Friston,
K., and Frackowiak, R. (2001). A voxel-based mor-
phometric study of ageing in 465 normal adult human
brains. Neuroimage, 14(1):21–36.
Hall, L., Bensaid, A., Clarke, L., Velthuizen, R., Silbiger,
M., and Bezdek, J. (1992). A comparison of neural
network and fuzzy clustering techniques insegment-
ing magnetic resonance images of the brain. IEEE
Transactions on Neural Networks, 3(5):672–682.
Head, D., Snyder, A., Girton, L., Morris, J., and Buckner,
R. (2005). Frontal-hippocampal double dissociation
between normal aging and Alzheimer’s disease. Cere-
bral Cortex, 15(6):732–739.
Lehtovirta, M., Laakso, M., Soininen, H., Helisalmi, S.,
Mannermaa, A., Helkala, E., Partanen, K., Ryyn
¨
anen,
M., Vainio, P., Hartikainen, P., et al. (1995). Vol-
umes of hippocampus, amygdala and frontal lobe in
Alzheimer patients with different apolipoprotein E
genotypes. Neuroscience, 67(1):65–72.
Longstreth, W., Manolio, T., Arnold, A., Burke, G., Bryan,
N., Jungreis, C., Enright, P., O’Leary, D., and Fried,
L. (1996). Clinical correlates of white matter findings
on cranial magnetic resonance imaging of 3301 el-
derly people The Cardiovascular Health Study. Stroke,
27(8):1274–1282.
MacQueen, J. et al. (1966). Some methods for classification
and analysis of multivariate observations.
Miller, A., Alston, R., and Corsellis, J. (1980). Variation
with age in the volumes of grey and white matter in
the cerebral hemispheres of man: measurements with
an image analyser. Neuropathology and applied neu-
robiology, 6(2):119–132.
Murgasovaa, M. (2009). Construction of a dynamic 4D
probabilistic atlas for the developing brain.
Pham, D., Xu, C., and Prince, J. (2000). Current Methods
In Medical Image Segmentation 1. Annual Review of
Biomedical Engineering, 2(1):315–337.
Thacker, N. and Jackson, A. (2001a). Mathematical seg-
mentation of grey matter, white matter and cerebral
spinal fluid from MR image pairs. British Journal of
Radiology, 74(879):234.
Thacker, N. and Jackson, A. (2001b). Mathematical seg-
mentation of grey matter, white matter and cerebral
spinal fluid from MR image pairs. British Journal of
Radiology, 74(879):234.
Vrooman, H., Cocosco, C., van der Lijn, F., Stokking, R.,
Ikram, M., Vernooij, M., Breteler, M., and Niessen,
W. (2007). Multi-spectral brain tissue segmentation
using automatically trained k-nearest-neighbor classi-
fication. Neuroimage, 37(1):71–81.
Wahlund, L., Agartz, I., Almqvist, O., Basun, H., Forssell,
L., Saaf, J., and Wetterberg, L. (1990). The brain in
healthy aged individuals: MR imaging. Radiology,
174(3):675–679.
Xiang, Z. and Joy, G. (1994). Color image quantization by
agglomerative clustering. IEEE Computer Graphics
and Applications, 14(3):44–48.
BIOSIGNALS 2010 - International Conference on Bio-inspired Systems and Signal Processing
514