SemSon
Connecting Ontologies and Web Applications

Geert Vanderhulst, Kris Luyten and Karin Coninx
Hasselt-University — transnationale Universiteit Limburg
Expertise Centre for Digital Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium

Keywords:

Abstract:

Semantic web, Web-based applications, Ontologies.

The emerge of semantic data on the web puts the development of dynamic web applications to the test. On the

one hand, we witness more and more semantic information becoming available on the web. On the other hand,
we can see web-based applications evolve from server-side applications to responsive client-side applications
running in a web browser. In this paper we present a framework that bridges the gap between semantic data
defined in OWL ontologies and client-side web applications implemented in JavaScript.

1 INTRODUCTION

The shift to dynamic Web applications running in a
Web browser has brought up the need to interact with
remote data from client-side scripts. At the same time,
an increasing amount of meaningful information is
published on the Web, making it possible for Web
applications to better understand and satisfy requests
between users and machines as envisioned by the se-
mantic Web (Berners-Lee et al., 2001). Since most
Web-based applications still rely on a fixed database
schema, the semantics of the application data are of-
ten known in advance and interaction with a Web
server’s database can be abstracted using data objects.
However, when developers start to adopt ontologies as
a means to structure, query and share information, the
full semantics of available data are not always known
beforehand. For example, one ontology can extend
another ontology with extra concepts and relations
and hence give rise to a richer knowledge base. In
this case, data objects should adapt to match the con-
cepts in the aggregated knowledge base, in order to
fully exploit the available information.

In this paper we present a framework, called Sem-
Son, that dynamically maps information defined in an
ontology on scripted data objects and vice versa. Even
though there are fundamental differences between
object-oriented programming (OOP) languages and
knowledge representation frameworks such as OWL
(Koide and Takeda, 2006), we show that a dynamic
programming language such as JavaScript (JS) is very
suitable for semantic data binding using OOP. We use

Vanderhulst G., Luyten K. and Coninx K.
SemSon - Connecting Ontologies and Web Applications.
DOI: 10.5220/0002770201630166

SPARQL (Prud’hommeaux and Seaborne, 2008) and
JSON! as glue to connect semantic data and JS ob-
jects on the fly. SemSon contributes to an improved
scalability of Web applications that leverage seman-
tic data by providing constructs to 1) map OWL in-
stances on JS objects and 2) create new JS objects
that adhere to an OWL class definition.

2 RELATED WORK

In (Koide and Takeda, 2006), the semantic gap be-
tween OOP languages and OWL is explained: vari-
ous discrepancies between static OOP languages such
as Java and OWL/RDF are due to a mismatch be-
tween OWL classes/individuals and OOP classes/in-
stances. The authors show that these mismatches can
be addressed by using a more dynamic and reflective
OOP language such as Common Lisp Object System
(CLOS) and present an OWL processor built on top
of CLOS that allows programmers to develop appli-
cation domain models using OOP. A more static ap-
proach for mapping an OWL ontology on Java classes
and instances is presented in (Kalyanpur et al., 2004).
In this work a solution is proposed to create a set
of Java interfaces and classes from an OWL ontol-
ogy whilst minimizing the impact of fundamental se-
mantic differences. An instance of a Java class repre-
sents an instance of a single class of the ontology with
most of its properties, class relationships and restric-

Ihttp://json.org/

163

In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page

ISBN: 978-989-674-025-2

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

tion definitions maintained.

Our work focuses on the dynamic use of OWL
constructs in JS to make meaningful information
directly available to client-side Web applications.
JavaScript, the default programming language to de-
velop this type of applications, is just like CLOS very
flexible in the way objects are composed: objects can
be redefined and extended with new properties and
methods at runtime. A growing interest of JSON in
combination with semantic Web technologies such as
SPARQL also motivates our research. For instance,
SPARQL query results can be serialized into JSON
and thus processed efficiently in JS using OOP (Clark
et al., 2007).

3 OWL NOTATION IN JSON

Ontology experts think in terms of concepts and re-
lations while many software developers think object-
oriented. We connect both worlds by representing in-
formation defined in an OWL ontology using class
objects and individual objects, expressed in JSON.
Class and individual objects correspond to OWL class
and individual descriptions respectively as depicted in
figure 1. In both representations, URIs (namespaces
and identifiers) are used to refer to objects (JSON)
and resources (OWL). Note however that SemSon is
not an API for OWL, but rather provides a means to
generate JS objects from OWL DL semantics. We
rely on the DL subset of the complete OWL vocabu-
lary because it enforces a strict separation of classes,
properties, individuals and data values which is also
found in OOP languages.

{"owl": {"properties™ [...], ...}} Class object
¥
{“rdf”: {"namespace™ ", “id": "}

LY

Figure 1: Mapping OWL to JSON.

In the remainder of this section we give a brief
overview of the representation of OWL class descrip-
tions in JSON and section 4 elaborates on the cre-
ation, use and validation of individual objects.

Class Descriptions. OWL classes can be described
using a simple class identifier (URI reference) or built
using the following constructs for which we provide
a JSON equivalent:

e FEnumeration: an OWL class can be described by
exhaustively enumerating its individuals.

{”OWI”: {”OIIGOf”I [’7A77’ 7’B’7]}}

164

e [ntersection, union, complement. AND, OR and
NOT operators can be applied to OWL class de-
scriptions.

{"owl”: {”intersectionOf”: ["A”, "B”]}}
{"owl”:{” complementOf”:”A”}}

e Properties: properties are linked with class de-
scriptions through domain and range axioms. Re-
strictions on properties put additional constraints
on the range of an OWL property when applied to
a particular class description (value constraints) or
on the number of values a property can take (car-
dinality constraints).

“owl”: {”properties”: [{"uri”: "P”,
“range ”:[”A” ,B”],” cardinality ”:
”1”} s “uri”: ”Q” s ”hasValue ”: [”C”]}]}}

Class Axioms. OWL contains three language con-
structs for combining class descriptions into class ax-
ioms. These axioms describe inheritance, equivalence
and disjointness relations that exist between classes.

{"owl”: {”subClassOf”: ["A”]},
{”equivalentClass”: ["B”]},
{7disjointWith”: [’C”]}}
This information enables a developer to reason
about the class hierarchy and semantically compare
classes.

4 SEMSON FRAMEWORK

The SemSon framework consists of a JavaScript li-
brary (semson.js) and a collection of Java-based
servlets (semson.war) which connect scripts running
in a Web browser with ontologies published on the
Web, as shown in figure 2. We use Jena? as seman-
tic data store (DS), Pellet (Sirin et al., 2007) as rea-
soner and SPARQL as query language. Table 1 lists
the main operations supported by SemSon.

4.1 Import and Query Ontologies

Data is made available to Web applications through a
semantic DS which acts as an application’s database.
Instead of using a fixed database schema, SemSon al-
lows programmers to specify the ontologies they want
to use at runtime and dynamically loads them into a
semantic DS. Once in the DS, information from the
ontology can be derived by constructing JS objects
that correspond to a class or individual whose related
data is transparently retrieved from the DS or by us-
ing SPARQL queries when more specific semantic

Zhttp://jena.sourceforge.net/

data selection is needed. A preprocessing step gen-
erates native JS object wrappers for each OWL class
description in an ontology. These wrappers support
the creation of objects in OOP-style: new myclass()
is equivalent with semson.i('myclass’). When prepro-
cessing is omitted,e.g. when dealing with large on-
tologies with many class descriptions, class objects
are resolved on an as-needed basis.

web server

Data Store

Query Engine

./

sa|gojojuo

semson.js Reasoner

semson.war

Figure 2: SemSon architecture.

Table 1: Main SemSon operations.

Import an ontology into a se-
mantic DS.

Create a class object from an
OWL class description.
Generate an individual object
from an OWL class description.
Validate an individual object
against a class object.

Receive class or individual data
from a semantic DS.

Send individual data to a se-
mantic DS.

import (location)

c(c_uri)

i(c_uri,i_uri)

validate (i, c)

update ()

commit ()

4.2 Create Individual Objects

In SemSon, objects are automatically generated from
an OWL class description at runtime. Software devel-
opers only need a minimal understanding of the on-
tologies designed by domain experts such as available
classes and their properties. Objects abstract underly-
ing (instances of) ontologies and thus simplify work-
ing with semantic data. Furthermore, when an ontol-
ogy is modified, data objects are updated accordingly:
the application developer gets an updated data inter-
face for free. Consider for instance an object that rep-
resents a person described in an ontology with names-
pace ns. This object is created as follows:

var p = new ns.Person ();
/! eq. semson.i(’ns:Person ’);

To construct an instance of a class, we analyze the
class description fetched from the ontology as de-
scribed in section 3 and dynamically generate an ob-
ject whose member variables match the OWL proper-
ties and their restrictions. For example, if a restriction
on the ns:Person class defines that a person has zero

SemSon - Connecting Ontologies and Web Applications

or more hobbies, we generate a hobbies member vari-
able that corresponds to an array:

p.firstName = ’John’;
p.hobbies.push(’Swimming ’);

Moreover, we have to take into account class descrip-
tions based on intersection, union and complement as
well as axioms such as rdfs:subClassOf when generat-
ing objects. These constructs specify the individuals
that are supported by a class and thus also indicate
valid properties for instances of classes. We select
a superset of properties which allow to create valid
class instances and map these on object member vari-
ables. Whether an instance is compliant to a class
or not can be validated at runtime (see further). To
avoid clashes with member variables, we use names-
paces to differentiate between similar properties, e.g.
obj.property versus obj.ns.property.

4.3 Validate Individual Objects

Most restrictions on properties and classes are hard
to enforce while generating an individual object. An
individual object can be manipulated at runtime and
become incompatible with its class object. To detect
inconsistencies, SemSon includes a validation algo-
rithm implemented in JavaScript — validate(i,c), with i
an individual object and ¢ a class object — which com-
pares the data of an individual object with its corre-
sponding class object. The algorithm currently con-
sists of three steps:

1. Enumeration Checking: check whether i equals
one of the allowed individuals for c.

2. Property Checking: verify whether properties de-
clared in an object are allowed, have valid values
and a correct number of elements. This also in-
volves class and datatype checking, for instance
to assert that a property value indeed matches a
class or value within a specified range.

3. Intersection, Union, Complement Checking: as-
sert that an object passes the following tests:
validate (this,A) && validate(this,B),
validate (this,A) || validate(this,B),
!validate (this,A)

The validation algorithm runs in a Web browser
and is fast, but it does not carry out advanced rea-
soning techniques or complex datatype checking (e.g.
user defined schema types). Its main purpose is to
provide an efficient means to debug client-side Web
applications by asserting that data objects are valid
at strategic places in the program. Besides, the algo-
rithm can be used to quickly validate user input by
encapsulating input data in an individual object and

165

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

performing validation. However, to make sure a se-
mantic DS remains consistent, a more powerful ap-
proach towards consistency checking is needed. This
is achieved by installing an OWL reasoner such as
Pellet (Sirin et al., 2007) between query engine and
DS which analyzes data before making it persistent.

4.4 Semantic Data Binding

A class or individual object is filled with data from the
DS by invoking its update function and data is sent
back to the DS by executing the commit function. For
performance reasons, we implemented these methods
in SemSon servlets deployed on a Web server which
have direct access to the DS. An update extracts data
from the DS using the resource’s URI as a reference
and maps this information on JSON as depicted in
figure 1. At the client-side script, the JSON data
is converted into an object and convenience methods
are added. A commit sends an object serialized into
JSON to the Web server where it is checked by a rea-
soner for consistency and finally added to the DS. We
also support an atomic commit operation in SemSon
using transactions. In a transaction, multiple individ-
ual objects can be grouped together and committed to
the DS in a single operation.

5 DISCUSSION AND
CONCLUSIONS

As a proof of concept, we have developed a prototype
Web application in which we use an OWL DL version
of the Friend of a Friend (FOAF) vocabulary to create
user profiles (see listing 1). The FOAF ontology
is imported into the DS and is preprocessed so that
OWL classes and individuals can be directly instanti-
ated using OOP. In this example, we use a transaction
to send the new and updated user profile to the DS
and verify the information was stored correctly using
a SPARQL query. When the ontology is extended
with constraints on properties which e.g. state that
each person must have a valid name, we can validate
individual objects at runtime. Furthermore, the Pellet
reasoner can be used to automatically infer missing
information when adding data to a DS. For example,
if FOAF is extended with family relations which
typically include inverse relations such as A parentOf
B < B childOf A, the reasoner can automatically
infer missing facts and add them to the DS to keep
ontologies and their instances consistent at all times.
We have presented a framework® for developing

3http://research.edm.uhasselt.be/semson/

166

dynamic Web applications that can create and/or use
semantic data from within a Web browser. SemSon is
targeted toward programmers who are familiar with
JavaScript, but only have a basic understanding of
OWL and ontologies in general. Besides the FOAF
example, we have used SemSon to create a Web
interface for controlling a pervasive environment
described using different domain-specific ontologies.
For now, the DS is disadvantageous for the scalability
of our approach since it is a centralized component.
When facing large data sets (and associated complex
ontologies) it needs to be replaced by a distributed
storage and querying solution.

var foafns =

“http ://www. mindswap.org/2003/owl/foaf ’;
var friend = ’http ://myns/myfriend ’;
semson.registerNS (’ foaf ’, foafns);
semson . import (foafns, true);

// register class objects

var pl = new foaf.Person ();
// create individuals
pl.firstName = ’first ’; pl.surname = ’last ’;

var p2 = new foaf.Person(friend);
pl.knows.push(p2.uri);
p2.knows.push(pl.uri);
semson.commit(pl, p2); // transaction
var q = ’SELECT ?p
WHERE {?p foaf:knows <’+ friend +’>};
var qr = semson.select(q); // querying
for (b in qr.results.bindings)

if (qr.results.bindings[b].p.value

== pl.uri)

alert (’found!’);

Listing 1: Creating a FOAF user profile using SemSon.

REFERENCES

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American, pages 34—43.

Clark, K. G., Feigenbaum, L., and Torres, E. (2007).
Serializing SPARQL Query Results in JSON.
http://www.w3.org/TR/rdf-sparql-json-res/.

Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J. A.
(2004). Automatic Mapping of OWL Ontologies into
Java. In SEKE’04, pages 98—103.

Koide, S. and Takeda, H. (2006). OWL-Full Reasoning
from an Object Oriented Perspective. In ASWC’06,
pages 263-277.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. http://www.w3.org/TR/rdf-
spargl-query/.

Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., and Katz, Y.
(2007). Pellet: A practical OWL-DL reasoner. Web

Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51-53.

