ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177, New
York, NY, USA. ACM.
Joachims, T. (2002a). Learning to Classify Text Using Sup-
port Vector Machines: Methods, Theory and Algo-
rithms. Kluwer Academic Publishers, Norwell, MA,
USA.
Joachims, T. (2002b). SVM light,
http://svmlight.joachims.org.
Kennedy, A. and Inkpen, D. (2006). Sentiment classi-
fication of movie reviews using contextual valence
shifters. Computational Intelligence, 22(2):110–125.
Kugatsu Sadamitsu, S. S. and Yamamoto, M. (2008). Sen-
timent analysis based on probabilistic models us-
ing inter-sentence information. In Nicoletta Cal-
zolari (Conference Chair), Khalid Choukri, B. M.
J. M. J. O. S. P. D. T., editor, Proceedings of the
Sixth International Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).
Liu, B. (2010). Sentiment analysis and subjectivity. Hand-
book of Natural Language Processing, 2:568.
Maarten, J. K., Marx, M., Mokken, R. J., and Rijke, M. D.
(2004). Using wordnet to measure semantic orienta-
tions of adjectives. In National Institute for, pages
1115–1118.
Mehler, A., Geibel, P., and Pustylnikov, O. (2007). Struc-
tural classifiers of text types: Towards a novel model
of text representation. Journal for Language Technol-
ogy and Computational Linguistics (JLCL), 22(2):51–
66.
Mullen, T. and Collier, N. (2004). Sentiment analysis us-
ing support vector machines with diverse information
sources. In Lin, D. and Wu, D., editors, Proceedings
of EMNLP 2004, pages 412–418, Barcelona, Spain.
Association for Computational Linguistics.
Pang and Lee (2004). A sentimental education: Sentiment
analysis using subjectivity summarization based on
minimum cuts. In In Proceedings of the ACL, pages
271–278.
Pang, B. and Lee, L. (2005). Seeing stars: exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL ’05: Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 115–124, Morristown, NJ,
USA. Association for Computational Linguistics.
Pang, B. and Lee, L. (2008). Opinion Mining and Sentiment
Analysis. Now Publishers Inc.
Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs
up?: sentiment classification using machine learn-
ing techniques. In EMNLP ’02: Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing, pages 79–86, Morristown, NJ,
USA. Association for Computational Linguistics.
Prabowo, R. and Thelwall, M. (2009). Sentiment analysis:
A combined approach. J. Informetrics, 3(2):143–157.
Stone, P. J., Dunphy, D. C., Smith, M. S., and Ogilvie, D. M.
(1966). The General Inquirer: A Computer Approach
to Content Analysis. MIT Press.
Strapparava, C. and Valitutti, A. (2004). WordNet-Affect:
an affective extension of WordNet. In Proceedings of
LREC, volume 4, pages 1083–1086.
Taboada, M., Brooke, J., and Stede, M. (2009). Genre-
based paragraph classification for sentiment analy-
sis. In Proceedings of the SIGDIAL 2009 Conference,
pages 62–70, London, UK. Association for Computa-
tional Linguistics.
Takamura, H., Inui, T., and Okumura, M. (2005). Ex-
tracting semantic orientations of words using spin
model. In ACL ’05: Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, pages 133–140, Morristown, NJ, USA. Associ-
ation for Computational Linguistics.
Tan, S. and Zhang, J. (2008). An empirical study of sen-
timent analysis for chinese documents. Expert Syst.
Appl., 34(4):2622–2629.
Turney, P. D. (2001). Thumbs up or thumbs down?: seman-
tic orientation applied to unsupervised classification
of reviews. In ACL ’02: Proceedings of the 40th An-
nual Meeting on Association for Computational Lin-
guistics, pages 417–424, Morristown, NJ, USA. As-
sociation for Computational Linguistics.
Turney, P. D. and Littman, M. L. (2002). Unsuper-
vised learning of semantic orientation from a hundred-
billion-word corpus. CoRR, cs.LG/0212012.
Waltinger, U. (2009). Polarity reinforcement: Sentiment
polarity identification by means of social semantics.
In Proceedings of the IEEE Africon 2009, September
23-25, Nairobi, Kenya.
Wiebe, J. and Riloff, E. (2005). Creating subjective and ob-
jective sentence classifiers from unannotated texts. In
Proceeding of CICLing-05, International Conference
on Intelligent Text Processing and Computational Lin-
guistics., volume 3406 of Lecture Notes in Computer
Science, pages 475–486, Mexico City, MX. Springer-
Verlag.
Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating ex-
pressions of opinions and emotions in language. Lan-
guage Resources and Evaluation, 1(2):0.
Wiegand, M. and Klakow, D. The role of knowledge-based
features in polarity classification at sentence level.
Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recogniz-
ing contextual polarity in phrase-level sentiment anal-
ysis. In HLT ’05: Proceedings of the conference on
Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pages 347–354,
Morristown, NJ, USA. Association for Computational
Linguistics.
Yu, H. and Hatzivassiloglou, V. (2003). Towards answer-
ing opinion questions: Separating facts from opinions
and identifying the polarity of opinion sentences. In
Proceedings of EMNLP’03.
WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies
210