
VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM

Michael Striewe and Michael Goedicke
Specification of Software Systems, University of Duisburg-Essen, Essen, Germany

Keywords: Computer-aided assessment, Self-training, Data visualization, Data structures.

Abstract: In introductory courses on programming it is important to discuss algorithms at the syntactic level in terms of
program code as well as at the semantic level in terms of affected data structures. While single visualizations
for examples during a lecture are easy to create for a teacher, students have to create visualizations of their
exercises on their own, which is time consuming and may lead to wrong results. To avoid this, we present
an extension for an e-learning and e-assessment framework that allows mass visualization of programming
exercises. This way, learning basic skills in data structures is supported, because each student gets individual
visualizations in an easier way.

1 INTRODUCTION

Many introductory courses to computer science
combine teaching basic programming skills in
object-oriented programming languages with basic
knowledge about algorithms and data structures. This
is reasonable, because all three topics are related very
closely. Nevertheless they require thinking in entirely
different scopes: program code is a static, precise
description of behaviour; algorithms are the more
abstract idea for this behaviour and objects forming
a data structure are subjects to be changed by this
behaviour. In a more focussed view we can state
that program code gives us a syntactical view on
algorithms, while data structures and their changes
give us a semantical view. Both views are important
and thus it is usual to support lectures not only by
giving source code examples but also by showing
visualizations of data structures.

Consequently exercises in computer science
should also be supported not only by giving feedback
to the program code, but also by visualizing objects
and data structures produced by the program code
created by students. These visualizations of each
individual solution would be an important link
between contents of the course and feedback for
exercises. Moreover, they can help students in
debugging their program code, because an image
of the data structure may give them some useful
information without any need for inserting debug
statements into their program code.

In general, two different approaches exist for

creating and using visualizations of data structures
in the classroom: the use of visual debuggers,
either as standalone tools (Gaylard and Zeller, 2009)
or integrated into an development environment, or
the use of development environments specialized
on teaching and visualization (Klling et al., 2003;
Zndorf, 2009). Both approaches are reasonable to
some extent, but also come with major drawbacks.

First of all, all approaches require the students
themselves to get active in order to generate
visualizations for their exercise solutions. In an
optimal case, students are motivated and talented in
using those tools and consequently get some benefit
from using them. In an avarage case one can expect
at least some students having problems in using these
tools, resulting in different and possibly misleading
visualizations even for similar solutions. In the worst
case, this can frustrate any learning success if the
visualization does not show the expected result since
students cannot distuingish whether they have written
wrong program code or have used the tool in a wrong
way.

The second problem is complexity. On the
one hand, professional visual debugging tools offer
many options that are not necessary in introductory
courses, making these tools confusing to first year
students. Readership skills in interpreting diagrams
are known to be an important problem (Petre, 1995)
and thus visualizations for exercises should be as
close to the visualizations used in the respective
lectures as possible. On the other hand, development
environments specialized for teaching may be too

172
Striewe M. and Goedicke M. (2010).
VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 172-179
DOI: 10.5220/0002773801720179
Copyright c© SciTePress



limited for some kind of exercises, narrowing the
teacher in designing exercises for the course. The
same applies to students, who may be limitied in
creating creative solutions.

As an alternative solution, we present in this
paper an extension for an e-learning and e-
assessment framework that is able to visualize data
structures from programming assignments submitted
by students. The extension is designed in that way
that a teacher can define how data structures should
be visualized and any exercise solution submitted
to the system will be visualized according to this
settings. The expected benefit is that complexity is
handled by the teacher this way, while students can
concentrate on solving their exercises and analyzing
the visualizations that are generated automatically.

The remainder of this paper is organized
as follows: section 2 elaborates on different
visualization techniques for data structures and argues
which of them are appropiate for our scenario.
Section 3 presents our implementation and section
4 shows how it works in practice. Conclusions and
future work are assembled in section 5.

2 VISUALIZATION OF DATA
STRUCTURES

Three main aspects have to be taken into account
when selecting techniques suitable for visualizing
data structures in an e-learning system: First, general
layout and design questions have to be answered. For
example, data structures like trees or lists already
hint towards layout contraints regarding the order
of elements in an image. Second, the use case of
an e-learning scenario requires special features like
displaying objects that are missing in a data structure
because they have been deleted unintentionally.
Third, visualizations of data structures are used in
the context of algorithms, producing sequences of
changed structures over the time. Thus displaying
these changes in an appropiate manner is an
additional requirement.

2.1 General Layout

Data structures in object-oriented programming
languages can in general be considered as attributed,
directed graphs. Thus, each node of a graph
represents an object, each arc between two nodes
represents a reference from one object to another, i.e.
a class attribute of a non-primitive type and each node
attribute represents a class attribute of a primitive
type.

According to the most common way of displaying
objects in UML object diagrams (OMG, 2004), we
decided to depict each node by a rectangular shape
and show the name of its object type at its head.
Different to UML object diagrams, we chose to
display all attribute names inside the shape instead
of displaying the names of non-primitive types as arc
labels outside the shape. Note, that it is a heuristic
decision to assume this solution as more appropiate
for teaching purposes and not a crucial feature of the
general approach.

More important is the impact of data structure
semantics on the layout. Whereever possible, the
layout should reflect properties of the data structure.
Two main data structures have been considered at
first: lists and trees. In both cases it is necessary to
keep a direction of reading, which can be achieved
by using algorithms for drawing layered graphs
(Sugiyama et al., 1981; Kaufmann and Wagner,
2001). This way the entry point of a data structure,
which is the “head” element in case of lists and the
“root” element in case of trees, is displayed as the
top-most object, while all subsequent objects follow
below in the same order as in the data structure.
Decisions have to be made if data structures are
combined, e.g. a tree structure where each element is
the head of a list. In this case, the direction of reading
for the first data structure can be vertical, while the
elements of the second data structure are arranged in
horizontal direction.

Since the visualizations are intended to be used
in an e-learning system running as an online service
on the web, some additional requirements regarding
the display environment have to be considered. First,
space is limited by screen sizes and resolutions and
bandwith may be limited when many students are
accessing one server at the same time. So the
layout algorithms should be able to create compact
arrangements of objects without wasting much space,
resulting in images of small file size that are readable
on a screen without scrolling. Second, layouts using
three dimensions instead of printing two dimensional
images would require browser plugins or similar
facilities to allow 3d navigation while viewing the
visualization. Thus we chose to stick to 2d images
in order to make using visualizations as simple as
possible.

2.2 Special Features for Teaching

Beside the general layout constraints discussed in the
previous section, some special requirements emerge
from our e-learning scenario. The UML specification
and thus also UML tools used by professionals do

VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM

173



in general not define or use any kind of coloring
inside their object diagrams. However, at least three
possibilities exist how coloring can be used to make
object diagrams more comprehensible for first year
students.

First, colors can be assigned to each object class,
thus coloring all objects of the same type in the same
color, making it easy to distungish them from objects
of other types. This way of coloring is useful in
situations, where many different classes are in action
and using objects of the wrong type is expected to
be a frequent fault made by students. This way of
coloring is of little use if only one or two different
classes are in action, e.g. in a list data structure with
elements of the same type, where wrong references
between objects are expected to be the most common
fault. In these cases, the second method of coloring
may be beneficial: the coloring of class attributes of
non-primitve types. For example, in a binary tree, the
left child of a node could always be colored yellow,
while the right child is always colored blue.

A third way of using colors is to mark objects that
have been removed from a data structure, e.g. by
displaying them half-transparent or surrounded with
a red border. This way, even a static visualization
can give information about changes that happened to
the data structure. Furthermore, it helps students to
distuingish between a situation in which an object
is missing because it has never been created and a
situation in which an object is missing because it
has been deleted. Being able to distuingish between
these situations is assumed to be a crucial point in
understanding behaviour of algorithms acting on data
structures.

2.3 Sequences of Visualizations

An even better understanding of behaviour can be
gained if not only one static visualization is used, but
a sequence of static visualizations. This can simply
be achieved by taking snapshots of the program state
several times during run time. Despite this simplicity,
this raises some additional requirements for the layout
of each visualization.

The most important concept in this context is the
“mental map” (Eades et al., 1991) of the student
using this visualizations. According to this concept,
changes between visualizations should be as minimal
as possible. Thus it is not acceptable that objects
displayed in one visualization are changing positions
or colors in the subsequent one without changes in the
relations between them. Even if changes in the data
structure occur it is hard to identify where an object
has gone if it has different positions in subsequent

visualizations. Thus we require our layout algorithms
to look ahead with respect to changes in the data
structure, minimizing confusion for the students. In
a simple solution, each object has only one fixed
position in all visualizations generated for a program.
This is well suited to perserve the mental map of the
student, but may be confusing with respect to the
behavior of the implemented algorithm. For example,
an exercise may be to realize sorting of elemtens in
a list. In this case, it would be much more helpful
if objects in the visualization change place step by
step until the algorithm terminates, instead of keeping
each in a fixed position and just changing pointers
between them.

Note that the requirements for sequences of
visualizations may stand in contrast to our general
requirements. For example, generating a compact
arrangement of objects in order to reduce the size of
the visualization would imply to move objects closely
together and close gaps between them. However,
being foresighted with regards to object positions
would imply to reduce this movement and plan with
gaps in early visualizations that are filled by objects
that appear later on in subsequent visualizations.

3 IMPLEMENTATION

The flexible architecture of our e-learning and e-
assessment framework JACK (Striewe et al., 2009)
allowed to implement an independent module for
creating visualizations. The implementation has been
done in Java and is so far able to visualize data
structures from Java programs.

3.1 Retrieving Data

The visualization module is based on the Java
Platform Debugging Architecture (Sun Microsys-
tems, Inc., b) and uses the JDI-API (Sun Microsys-
tems, Inc., a) for retrieving objects and events from
the Java virtual machine running the program submit-
ted by the student.

Besides the source code it requires a file
containing configuration information created by
the teacher. This way the teacher can specify
which classes of objects should be visualized and
which classes are irrelevant for the visualization.
Additionally, the teacher can specify breakpoints in
terms of lines in the program code at which snapshots
of the program state are taken. Note that this requires
to have at least one source code file which is not
modified by students so that line numbers are known
to the teacher for sure.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

174



Figure 1: The process of generating a visualization. Step 1 compiles multiple lists of object information from different
snapshots into one list of all objects and their relations. Step 2 calculates global settings based on this lists and generates
configuration files for each snapshot layout. Step 3 runs the GraphViz routine generating the images based on the
configuration.

According to this configuration, the Java Virtual
Machine for running the students program is
instructed to notify the visualization module every
time an object of the given classes is created. Each
time a breakpoint is reached, another notification is
given and the module takes a snapshot of the currenct
program state by collecting the current state for all
recorded objects. Each snapshot is stored in a seperate
file for further processing.

Also the current implementation is limited to
programs written in Java, visualizing data structures
from programs in other programming languages
would be possible in almost the same way, provided
similar debugging interfaces at run time are available
or the same format of snapshot files can be produced.

3.2 Drawing Graphs

For creating the visualizations, the module makes use
of the GraphViz library (GraphViz, 2009) for graph
drawing. We use the “dot” routine of this library,
because it offers exactly that kind of layered graphs
that is suitable for our requirements explained in
section 2. However, it is not able to handle sequences
of visualizations, so additional effort had to be made
to get the module foresighted with regards to optimal
positions of objects. See figure 1 for an overview of
the visualization process.

The visualization module first compiles a list
of all objects relevant in at least one visualization
and calculates positions for each of them. These
positions are used in all visualizations, even if this
would imply large gaps between objects. Thus our
implementations preferes preservation of the mental
map agains a compact arrangement. Nevertheless

most visualizations where small enough to fit the
screen without scrolling in our test cases, since
GraphViz allows additional options for scaling.

After the list of all objects has been compiled,
colors are assigned for coloring attributes of classes.
Thus these colors are defined globally and do not
change during sequences of visualizations. However,
running the same program two times may result in
different colorings, because internal mechanisms of
the Java Virtual Machine may result in a different
order of objects reported to the visualization module
and thus a different order of colors assigned to them.

Having done all global settings, the module
creates a layout configuration file for each snapshot
and runs the GraphViz routine with this configuration
in order to generate an image as the final step.

4 EXAMPLE

As an example we now consider a programming
exercise in which students have to implement a
phonebook. A phonebook consists of a data structure
composed of objects of typeentry, containing
attributes for name and phone number of the contacts
stored in the phonebook. In addition, each entry may
have a reference to an object of typeprofession,
which has an attribute for a title. Both a list ofentry
objects and a list ofprofession objects should be
maintained in a phonebook by pointing from one
element in a list to its successor, while an object of
typephonebook points to the heads of both lists.

Java source code for the typesentry and
profession is provided to the students completely,
so that they just have to implement algorithms for

VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM

175



inserting objects into a phonebook, sorting objects,
removing objects and so on. The source code for the
typephonebook is only provided as a stub that has to
be filled by the students. See listing 1 for the given
source code.

The exercise used in this example is taken from
a course on programming for first year students in
winter term 2008/09. It consists of several task that
have to be solved step by step. After each task, a
visualization is created, so we will explain and discuss
benefits of single visualizations as well as influences
of sequences of visualizations here.

public class Entry {

private String name;

private int number;

private Entry next;

private Profession profession;

public Entry(String name, int number, Entry next){

this.name = name;

this.number = number;

this.profession = null;

this.next = next;

}

public Entry(String name, int number,

Profession profession, Entry next){

this.name = name;

this.number = number;

this.profession = profession;

this.next = next;

}

}

public class Profession {

private String title;

private Profession next;

public Profession(String title, Profession next){

this.title = title;

this.next = next;

}

}

public class Phonebook {

public String city;

public Entry headEntryList;

public Profession headProfessionList;

// Add here the constructores and methods

// necessary to solve the exercise.

}

\vspace{1mm}

Listing 1: Given Java source code for the tree classes used in
the phonebook data structure from the example. Predefined
getter and setter methods are not shown here for brevity.

4.1 Task 1: Creating and Deleting
Objects

The first task inside the exercise is to create a
phonebook, insert one entry with a reference to a
profession, insert another entry without a reference
to a profession, insert an additional profession
and afterwards remove all professions that are not
references by any entry. In a correct implementation,
a visualization of the resulting data structure looks as
shown in figure 2(a). In this case, the visualization
module was configured to show all objects relevant
for the data structure and to consider objects of type
entry and profession as elements of a list, thus
ordering them one below each other. Most interesting
in this visualization is probably the upper object
of type profession, which is marked with a red
border. This is exactly that extra object that had
to be created and deleted afterwards according to
the given description of the task. Thus, a single
visualization is enough to show that this object has
been created and destroyed correctly and there is no
need to run extra test cases or insert debug statements
into the program code. Moreover, we can see that
the “headProfessionList” pointer has been moved
correctly to the successor of the deleted element.

As a comparison, figure 2(b) shows a visualization
based on the same configuration for a wrong solution
of the same exercise. Obviously there is no deleted
object. Since the visualization is configured to show
all objects relevant for the data structure, it is easy to
check whether the first object in the professions list
is referenced by any object of typeentry. Thus the
student may conclude that something is wrong with
the algorithm for deleting objects, but everything is
right with the algorithm for inserting objects.

4.2 Task 2: Sorting Data Structures

The second task inside the exercise is to create
another phonebook and insert several objects of the
typesentry and profession and some references
between them. Afterwards both lists have to be sorted
alphabetically. Figure 3(a) shows a visualization of
a correct solution. The same configuration for the
visualization module has been used again as for the
visualizations of the first task. Obviously both lists
are in alphabetical order as requested. In this simple
case it may be sufficient to provide a textual output of
both lists to check whether they are in the right order.
However, it is easy to imagine, that these checks can
be performed in an easier way with visualizations in
more complex cases. This is already understandable
from figure 3(b), which shows a visualization of a

CSEDU 2010 - 2nd International Conference on Computer Supported Education

176



(a) Correct solution (b) Wrong solution

Figure 2: Visualization of solutions for task 1 from the example. In the correct solution, the upper object of typeprofession
marked with a red border has been created and removed correctly according to the given task and all pointers are set correctly,
too. In the wrong solution, no object has been deleted, although it is clearly visible that the first object of typeprofession in
the list is not referenced from any object of typeentry.

(a) Correct solution (b) Wrong solution

Figure 3: Visualization of solutions for task 2 from the example. In the correct solution, it is easy to see that both listsare in
the correct alphabetical order. In the wrong solution, the entries are obviously not sorted correctly. Note that the ugly layout
is no bug. Compare to the subsequent visualization shown in figure 5 for explaination.

VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM

177



Figure 4: Visualization of a correct solution for task 3 fromthe example. The newly created phonebook is shown left, while
the older phonebooks remain unchanged. Objects of typeentry in the new phonebook are in the correct order as requested
and the last object of type profession has two incoming references.

wrong solution. If we would use a plain textual
representation of the list by printing out the names
we would notice that they are in the wrong order,
but we would not see that the student might just
have misunderstood the task by sorting the entries by
number.

4.3 Task 3: Merging Data Structures

As already stated above, most benefits from
visualizations can be expected if data structures tend
to get complex. Thus we now consider a third
task in which students are asked to merge the both
phonebooks created in the previous tasks. More
detailed, they are asked to create a third object of
type phonebook, containing copies of the complete
content of the older phonebooks, i.e. copies of all
objects of typeentry in alphabetical order and copies
of all objects of typeprofession in arbitrary order,
but no duplicates. Thus pointers have to be corrected
in case when two objects of typeprofession with
the same title exist in both older phonebooks.

Figure 4 shows the visualization of a correct so-
lution, again using the same visualization configura-
tion as the previous ones. Obviously a third object of
typephonebook has been created using copies of ob-
jects as requested. In textual output, students would

be required to have much detailed knowledge about
object identifiers to see whether they have used copies
of objects or just added references, but the visualiza-
tion makes this clear at once. All other requirements
of the task can also be checked easily: The objects
of type entry are in alphabetical order and the last
object of typeprofession has two incoming refer-
ences.

Figure 5 shows a visualization of a solution where
something has gone completly wrong. A new object
of typephonebook has been created, but no copies of
older objects are used. In addition, only some point-
ers has been added or changed, so that the new phone-
book does not even contain all old objects in correct
order. However, it can be observed that the refer-
ence between the professions “doctor” and “lawyer”
has been turned and hence even the data structure of
the older phonebook has been destroyed. We would
not have noticed this if we would just have used a
textual output of the contents of the new phonebook.
Additionally, it would have been much more difficult
to find this change if the layout algorithm does not
perserve the mental map in sequences of visualiza-
tions. Since we required our layout algorithm to be
foresighted in section 2, this change in the reference is
the reason why this objects has already been placed in
a non-optimal position in the previous visualization.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

178



Figure 5: Visualization of a wrong solution for task 3 from
the example. A new phonebook has been created, but
objects from the older phonebooks are referenced instead
of being copied. Moreover, only few pointers have been
changed. The reuse of known objects in this task is the
reason why the visualization module placed the object of
type profession with title “doctor” at a position that did
not seem to be reasonable in figure 3(b).

5 CONCLUSIONS

In this paper, we introduced a visualization module
for an e-learning and e-assessment system for the
subject of computer science. We argued how
visualizations configured by a teacher can help
students to analyze the data structures produced
by their program code easier than with other
devices. The concepts have been implemented in a
prototype and shown by examples from a course on
programming.

Besides adding more configuration options to
the prototype in order to get even better results
in layout, two main research tasks are considered
at the moment: First, an empirical study among
approx. 200 students using the e-assessment system
during next winter term will be conducted for
getting better feedback about benefits and limitations
of the visualizations. This will be related to
layout constraints as well as to theories of program
comprehension. Second, techniques of search based

software engineering and graph pattern matching may
be applied to the data structure diagrams in order to
comment them automatically. This may for example
result in additional colorings, marking parts of a data
structure as correct or incorrect.

ACKNOWLEDGEMENTS

The authors would like to thank Mobasher Ullah for
his enthusiasm in implementing the prototype and
running many test cases.

REFERENCES

Eades, P., Lai, W., Misue, K., and Sugiyama, K. (1991).
Preserving the Mental Map of a Diagram. Research
Report IIAS-RR-91-16E.

Gaylard, A. and Zeller, A. (2009). Data Displaying
Debugger. www.gnu.org/software/ddd/.

GraphViz (2009). GraphViz. http://www.graphviz.org.

Kaufmann, M. and Wagner, D. (2001).Drawing Graphs:
Methods and Models. Springer.

Klling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003). The BlueJ system and its pedagogy.Journal
of Computer Science Education, Special Issue on
Learning and Teaching Object Technology, 13(4).

OMG (2004). UML 2.0 superstructure specification. Object
Management Group.

Petre, M. (1995). Why looking isn’t always seeing: reader-
ship skills and graphical programming.Communica-
tions of the ACM, 38(6):33–44.

Striewe, M., Balz, M., and Goedicke, M. (2009). A flexible
and modular software architecture for computer aided
assessments and automated marking. InProceedings
of the First International Conference on Computer
Supported Eductation (CSEDU), 23 - 26 March 2009,
Lisboa, Portugal, volume 2, pages 54–61. INSTICC.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for Visual Understanding of Hierarchical System
Structures.IEEE Transactions on Systems, Man, and
Cybernetics, SMC-11(2).

Sun Microsystems, Inc. JavaTMDebug Interface API.
http://java.sun.com/javase/6/docs/jdk/api/jpda/jdi/
index.html.

Sun Microsystems, Inc. JavaTMPlatform Debugging Archi-
tecture API. http://java.sun.com/javase/technologies/
core/toolsapis/jpda/.

Zndorf, A. (2009). eDOBS - Java Heap as UML Object
Diagram. www.se.eecs.uni-kassel.de/se/
index.php?edobs.

VISUALIZING DATA STRUCTURES IN AN E-LEARNING SYSTEM

179


