proof that there is a need to adapt traditional collab-
orative filtering techniques to the specific character-
istics, such as the sparsity, of user-generated content
websites. In future research, we will optimize the
algorithm parameters to further improve the perfor-
mance results. Besides we will investigate if the prin-
ciple of profile extension is applicable in other types
of collaborative filtering algorithms.
ACKNOWLEDGEMENTS
We would like to thank the Research Foundation -
Flanders (FWO), for the research position of Toon De
Pessemier (Aspirant FWO). We would also like to ex-
press our appreciation to Thomas Bonte, the founder
of PianoFiles, for putting the data set of his website at
our disposal.
REFERENCES
Bell, R. M. and Koren, Y. (2007). Lessons from the netflix
prize challenge. SIGKDD Explor. Newsl., 9(2):75–79.
Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empir-
ical analysis of predictive algorithms for collaborative
filtering. pages 43–52. Morgan Kaufmann.
Campochiaro, E., Casatta, R., Cremonesi, P., and Turrin, R.
(2009). Do metrics make recommender algorithms?
Advanced Information Networking and Applications
Workshops, International Conference on, 0:648–653.
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and Moon, S.
(2007). I tube, you tube, everybody tubes: analyzing
the world’s largest user generated content video sys-
tem. In IMC ’07: Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement, pages
1–14, New York, NY, USA. ACM.
Evain, J.-P. and Mart
´
ınez, J. M. (2007). Tv-anytime
phase 1 and mpeg-7. J. Am. Soc. Inf. Sci. Technol.,
58(9):1367–1373.
Golder, S. and Huberman, B. A. (2005). The structure of
collaborative tagging systems. ArXiv Computer Sci-
ence e-prints.
Hayes, C., Massa, P., Avesani, P., and Cunningham, P.
(2002). An on-line evaluation framework for rec-
ommender systems. In In Workshop on Personaliza-
tion and Recommendation in E-Commerce (Malaga.
Springer Verlag.
Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl,
J. (1999). An algorithmic framework for perform-
ing collaborative filtering. In SIGIR ’99: Proceedings
of the 22nd annual international ACM SIGIR confer-
ence on Research and development in information re-
trieval, pages 230–237, New York, NY, USA. ACM.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl,
J. T. (2004). Evaluating collaborative filtering recom-
mender systems. ACM Trans. Inf. Syst., 22(1):5–53.
Huang, Z., Zeng, D., and H.Chen (2004). A link analy-
sis approach to recommendation with sparse data. In
AMCIS 2004: Americas Conference on Information
Systems, New York, NY, USA.
Karypis, G. (2001). Evaluation of item-based top-n recom-
mendation algorithms. In CIKM ’01: Proceedings of
the tenth international conference on Information and
knowledge management, pages 247–254, New York,
NY, USA. ACM.
Kurapati, K., Gutta, S., Schaffer, D., Martino, J., and Zim-
merman, J. (2001). A multi-agent tv recommender. In
Proceedings of the UM 2001 workshop Personaliza-
tion in Future TV, pages 13–14.
Lee, H., Yang, S.-J., Kim, J.-G., and Hong, J. (2005).
Personalized tv services based on tv-anytime for pdr.
Consumer Electronics, 2005. ICCE. 2005 Digest of
Technical Papers. International Conference on, pages
115–116.
Linden, G., Smith, B., and York, J. (2003). Amazon.com
recommendations: item-to-item collaborative filter-
ing. Internet Computing, IEEE, 7(1):76–80.
McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being
accurate is not enough: how accuracy metrics have
hurt recommender systems. In CHI ’06: CHI ’06 ex-
tended abstracts on Human factors in computing sys-
tems, pages 1097–1101, New York, NY, USA. ACM.
Papagelis, M., Plexousakis, D., and Kutsuras, T. (2005).
Trust Management. Springer Berlin / Heidelberg.
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J.
(2000). Analysis of recommendation algorithms for
e-commerce. In EC ’00: Proceedings of the 2nd ACM
conference on Electronic commerce, pages 158–167,
New York, NY, USA. ACM.
Segaran, T. (2007). Programming collective intelligence.
O’Reilly.
Weng, J., Miao, C., Goh, A., Shen, Z., and Gay, R. (2006).
Trust-based agent community for collaborative rec-
ommendation. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems, pages 1260–1262, New York,
NY, USA. ACM.
Yu, Z. and Zhou, X. (Feb 2004). Tv3p: an adaptive assis-
tant for personalized tv. Consumer Electronics, IEEE
Transactions on, 50(1):393–399.
Zhang, H., Zheng, S., and Yuan, J. (May 2005). A personal-
ized tv guide system compliant with mhp. Consumer
Electronics, IEEE Transactions on, 51(2):731–737.
WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies
226