6 CONCLUSIONS
In this paper we used geometric algebra techniques in
order to compute principal curvatures of point sets in
an elegant and efficient way. We could benefit espe-
cially from the property of geometric algebra of nat-
urally describing curvatures. On the one hand, geo-
metric algebra can easily describe geometric objects
like spheres and planes, circles and lines as well as
the limit between them. On the other hand its in-
ner product provides possibilities for a fast measure-
ment of distances. In a nutshell, we presented a novel
simple and efficient approach, which allows to access
curvature information within dense point sets without
costly preprocessing.
REFERENCES
Adamson, A. and Alexa, M. (2003). Approximating and
Intersecting Surfaces from Points . In Eurograph-
ics Symposium on Geometry Processing (SGP), pages
230–239.
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin,
D., and Silva, C. T. (2001). Point set surfaces. In
Conference on Visualization (VIS), pages 21–28.
Alliez, P., Cohen-Steiner, D., Devillers, O., L´evy, B., and
Desbrun, M. (2003). Anisotropic polygonal remesh-
ing. ACM Transactions on Graphics, 22(3):485–493.
Chen, X. and Schmitt, F. (1992). Intrinsic surface prop-
erties from surface triangulation. In European Con-
ference on Computer Vision (ECCV), pages 739–743,
London, UK. Springer-Verlag.
Gatzke, T., Grimm, C., Garland, M., and Zelinka, S. (2005).
Curvature Maps For Local Shape Comparison. In
Shape Modeling and Applications, pages 244–253.
Gois, J., Tejada, E., Etiene, T., Nonato, L., Castelo, A.,
and Ertl, T. (2006). Curvature-driven modeling and
rendering of point-based surfaces. In Brazilian Sym-
posium on Computer Graphics and Image Processing
(SIBGRAPI), pages 27–36.
Gross, M. and Pfister, H. (2007). Point Based Graphics.
Morgan Kaufmann.
Guennebaud, G., Germann, M., and Gross, M. (2008). Dy-
namic sampling and rendering of algebraic point set
surfaces. In Eurographics, pages 653–662.
Guennebaud, G. and Gross, M. H. (2007). Algebraic
point set surfaces. ACM Transactions on Graphics,
26(3):23.
Hameiri, E. and Shimshoni, I. (2003). Estimating the prin-
cipal curvatures and the darboux frame from real 3-d
range data. IEEE Systems, Man, and Cybernetics B
(SMC-B), 33(4):626–637.
Hildenbrand, D. (2005). Geometric computing in computer
graphics using conformal geometric algebra. Comput-
ers & Graphics, 29(5):802–810.
Hornung, A. and Kobbelt, L. (2006). Robust Reconstruc-
tion of Watertight 3D Models from Non-uniformly
Sampled Point Clouds Without Normal Information .
In Eurographics Symposium on Geometry Processing
(SGP), pages 41–50.
IEEE (2001). Std. 1241-2000 IEEE standard for terminol-
ogy and test methods foranalog-to-digital converters,
chapter 3, pages 26–27.
Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh,
K. (2007). Robust Statistical Estimation of Curvature
on Discretized Surfaces. In Eurographics Symposium
on Geometry Processing (SGP), pages 13–22.
Kolluri, R., Shewchuk, J. R., and O’Brien, J. F. (2004).
Spectral Surface Reconstruction From Noisy Point
Clouds . In Eurographics Symposium on Geometry
Processing (SGP), pages 11–22.
Lavoue, G. (2007). A Roughness Measure for 3D Mesh
Visual Masking. In ACM SIGGRAPH Symposium
on Applied Perception in Graphics and Visualization
(APGV), pages 57 – 60.
Mederos, B., Amenta, N., Velho, L., and de Figueiredo,
L. H. (2005). Surface Reconstruction for Noisy Point
Clouds. In Eurographics Symposium on Geometry
Processing (SGP), pages 53–62.
Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L.
(2004). Registration of Point Cloud Data from a Ge-
ometric Optimization Perspective . In Symposium on
Geometry Processing, pages 23–32.
Taubin, G. (1995). Estimating the Tensor of Curvature of
a Surface from a Polyhedral Approximation. In IEEE
International Conference on Computer Vision (ICCV),
pages 902–907.
Vince, J. (2008). Geometric Algebra for Computer Graph-
ics. Springer.
Yang, Y.-L., Lai, Y.-K., Hu, S.-M., and Pottmann, H.
(2006). Robust Principal Curvatures on Multiple
Scales. In Eurographics Symposium on Geometry
Processing (SGP), pages 223–226.
ESTIMATION OF CURVATURES IN POINT SETS BASED ON GEOMETRIC ALGEBRA
19