ACKNOWLEDGEMENTS
This work was carried out under the NWO (Nether-
lands Organization for Scientific research) Multivis
project (N 643.100.602), which is part of the NWO
VIEW program.
REFERENCES
Achenbach, S., Moshage, W., Ropers, D., and Bach-
mann, K. (1998). Curved multiplanar reconstructions
for the evaluation of contrast-enhanced electron-beam
CT of the coronary arteries. American Journal of
Roentgenology, pages 895–899.
Bade, R., Ritter, F., and Preim, B. (2005). Usability com-
parison of mouse-based interaction techniques for pre-
dictable 3D rotation. In 5th international sympo-
sium on smart graphics: SG 2005, pages 138–150.
Springer.
Boskamp, T., Rinck, D., Link, F., K¨ummerlen, B., Stamm,
G., and Mildenberger, P. (2004). New vessel analysis
tool for morphometric quantification and visualization
of vessels in CT and MR imaging data sets. Radio-
graphics, 24(1):287–297.
Dixon, S. R., Wickens, C. D., and McCarley, J. S. (2007).
On the independence of compliance and reliance: are
automation false alarms worse than misses? Human
factors, 49(4):564–72.
Fisher, D. L. and Tan, K. C. (1989). Visual displays: The
highlighting paradox. Human Factors, 31(1):17–30.
Freer, T. W. and Ulissey, J. M. (2001). Screening mam-
mography with computer-aided detection: prospective
study of 12,860 patients in a community breast center.
Radiology, 220:781–786.
Hong, W., Qiu, F., and Kaufman, A. (2006). A pipeline for
computer aided polyp detection. IEEE Transactions
on Visualization and Computer Graphics, 12(5):861–
868.
Kanitsar, A. (2004). Curved Planar Reformation for Ves-
sel Visualization. PhD thesis, Institute of Computer
Graphics and Algorithms, Vienna University of Tech-
nology, Favoritenstrasse 9-11/186, A-1040 Vienna,
Austria.
Levinski, K., Sourin, A., and Zagorodnov, V. (2009). 3D
visualization and segmentation of brain MRI data. In
GRAPP 2009, pages 111–118.
Levy, J. H., Broadhurst, R. R., Ray, S., Chaney, E. L., and
Pizer, S. M. (2007). Signaling local non-credibility in
an automatic segmentation pipeline. In Proceedings
of the International Society for Optical Engineering
meetings on Medical Imaging, Volume 6512.
L´opez-Aligu´e, F. J., Acevedo-Sotoca, I., Garc´ıa-Manso,
A., Garc´ıa-Orellana, C. J., and Gallardo-Caballero, R.
(2004). Microcalcifications detection in digital mam-
mograms. In EMBC 2004.
Maltz, M. and Shinar, D. (2003). New alternative methods
of analyzing human behavior in cued target acquisi-
tion. Human Factors, 45(2):281–295.
Mueller, D. C., Maeder, A. J., and O’Shea, P. J. (2005). En-
hancing direct volume visualisation using perceptual
properties. In Proc. SPIE, Vol. 5744, pages 446–454.
Rolland, J. P., Muller, K. E., and Helvig, C. S. (1995). Vi-
sual search in medical images: a new methodology to
quantify saliency. In Proc. SPIE Vol. 2436, pages 40–
48.
Suinesiaputra, A., de Koning, P. J., Zudilova-Seinstra, E. V.,
Reiber, J. H. C., and van der Geest, R. J. (2009). A 3D
MRA segmentation method based on tubular NURBS
model. In International Society for Magnetic Reso-
nance in Medicine 2009, Honolulu, Hawaii.
Tamborello, F. P. and Byrne, M. D. (2007). Adaptive but
non-optimal visual search behavior with highlighted
displays. Cognitive Systems Research, 8(3):182–191.
van Schooten, B. W., van Dijk, E. M. A. G., Zudilova-
Seinstra, E. V., de Koning, P. J. H., and Reiber, J.
H. C. (2009). Evaluating visualisation and navigation
techniques for interpretation of MRA data. In GRAPP
2009, pages 405–408.
Wang, Y., Gao, X., and Li, J. (2007). A feature analysis
approach to mass detection in mammography based
on RF-SVM. In ICIP 07, pages 9–12.
Wickens, C. D. and Andre, A. D. (1990). Proximity com-
patibility and information display: Effects of color,
space, and objectness on information integration. Hu-
man Factors, 32(1):61–77.
Yeh, M. and Wickens, C. D. (2001). Display signaling in
augmented reality: Effects of cue reliability and image
realism on attention allocation and trust calibration.
Human Factors, 43(3):355–365.
IVAPP 2010 - International Conference on Information Visualization Theory and Applications
84