BACKGROUND MODELING WITH MOTION CRITERION AND MULTI-MODAL SUPPORT
Juan Rosell-Ortega, Gabriela Andreu-García, Fernando López-García, Vicente Atienza-Vanacloig
2010
Abstract
In this paper we introduce an algorithm aimed to create a background model with multimodal support, which associates a confidence value to the obtained model. Our algorithm creates the model based on a criterion of motion, pixel behavior and pixel similarity with the scenes background. This method uses only three frames to create a first model without restrictions on the frame content. The model is adapted over time to reflect new situations and illumination changes in the scene. One approach to detect corrupt model is also mentioned. The goal of confidence value is to quantify the quality of the model after a number of frames have been used to build it. Quantitative experimental results are obtained with a well-known benchmark and compared to a classical background modelling algorithm, showing the benefits of our approach.
References
- Elgammal, A., Harwood, D., and Davis, L. (2000). Non-parametric model for background subtraction. ECCV00, pages 751 767.
- Jabri, S., Duric, Z.,Wechsler, H., and Rosenfeld, A. (2000). Detection and location of people in video images unsing adaptive fusion of color and edge information. IEEE Proc. ICPR00, pages 627 630.
- M. Heikkila, M. and Pietikainen, M. (2006). A texturebased method for modeling the background and detecting moving 0bjects. IEEE Trans. PAMI, 28(4):657662.
- Mason, M. and Duric, Z. (2001). Using histograms to detect and track objects in color video. Proc. Applied Imaginery pattern Recognition Workshop, pages 154159.
- Rosell-Ortega, J., Andreu-Garcia, G., Rodas-Jorda, A., and Atienza-Vanacloig, V. (2008). Background modelling in demanding situations with confidence measure. IEEE Proc. ICPR08.
- Stauffer, C. and Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. Proc. IEEE CVPR99, pages 246 252.
- Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999). Wallflower: Principles and practice of background maintenance. IEEE ICPR99, Kerkyra, Greece, pages 255261.
- Wixson, L. (2000). Detecting salient motion by accumulating directionally-consistent flow. IEEE Trans. PAMI, 8(22):774 780.
- Wren, C. R., A. Azarbayenjani, T. D., and Pentland, A. P. (1997). Pfinder: rel-time tracking of the human body. IEEE Trans. PAMI, 10(7):780 785.
- Zang, Q. and Klette, R. (2004). Robust background subtraction and maintenance. IEEE ICPR04, pages 90 93.
Paper Citation
in Harvard Style
Rosell-Ortega J., Andreu-García G., López-García F. and Atienza-Vanacloig V. (2010). BACKGROUND MODELING WITH MOTION CRITERION AND MULTI-MODAL SUPPORT . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 419-422. DOI: 10.5220/0002822604190422
in Bibtex Style
@conference{visapp10,
author={Juan Rosell-Ortega and Gabriela Andreu-García and Fernando López-García and Vicente Atienza-Vanacloig},
title={BACKGROUND MODELING WITH MOTION CRITERION AND MULTI-MODAL SUPPORT},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={419-422},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002822604190422},
isbn={978-989-674-028-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - BACKGROUND MODELING WITH MOTION CRITERION AND MULTI-MODAL SUPPORT
SN - 978-989-674-028-3
AU - Rosell-Ortega J.
AU - Andreu-García G.
AU - López-García F.
AU - Atienza-Vanacloig V.
PY - 2010
SP - 419
EP - 422
DO - 10.5220/0002822604190422