REFERENCES
Bobick, A. and Davis, J. (2001). The recognition of human
movement using temporal templates. IEEE Trans.
Pattern Anal. Mach. Intell., 23(3):257–267.
Bobick, A. F. and Johnson, A. Y. (2001). Gait recog-
nition using static, activity-specific parameters. In
IEEE Proc. Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), vol-
ume 1, pages 423–430.
Boulgouris, N. and Chi, Z. (2007). Gait recognition us-
ing radon transform and linear discriminant analysis.
IEEE Trans. Image Process, 16(3):731–740.
Chen, L. F., Liao, H. Y. M., and Lin, J. C. (2001). Person
Identification using facial motion. IEEE Proc. Inter-
national Conference of Image Proceeding, 2:677–680.
Colmenarez, A., Frey, B., and Huang, T. S. (1999). A prob-
abilistic framework for embedded face and facial ex-
pression recognition. IEEE Proc. Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, 1:592–597.
Freund, Y. and Schapire, R. E. (1999). A short introduction
to boosting. Proc. of the Sixteenth International Joint
Conference on Artificial Intelligence (JSAI), pages
771–780.
Gomez, G. and Morales, E. F. (2002). Automatic feature
construction and a simple rule induction algorithm for
skin detection. In Proc. of the ICML Workshop on
Machine Learning in Computer Vision (MLCV), pages
31–38.
Ioannidis, D., Tzovaras, D., Damousis, I. G., Argyropou-
los, S., and Moustakas, K. (2007). Gait Recognition
Using Compact Feature Extraction Transforms and
Depth Information. IEEE Trans.Inf. Forensics Secu-
rity., 2(3):623–630.
Jain, A. K., Ross, A., and Prabhakar, S. (2004). An Intro-
duction to Biometric Recognition. IEEE Trans. Cir-
cuits Syst. Video Technol., 14(1):4–20.
Junker, H., Ward, J., Lukowicz, P., and Tr¨oster, G. (2004).
User Activity Related Data Sets for Context Recog-
nition. In Proc. Workshop on ’Benchmarks and a
Database for Context Recognition’.
Kale, A., Cuntoor, N., and Chellappa, R. (2002). A frame-
work for activity-specific human identification. In
IEEE Proc. International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 4,
pages 3660–3663.
Li, B., Chellappa, R., Zheng, Q., and Der, S. (2001). Model-
based temporal object verification using video. IEEE
Trans. Image Process, 10:897–908.
Liu, X. and Chen, T. (2003). Video-based face recog-
nition using adaptive hidden markov models. IEEE
Proc. Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 1:I340–I345.
Poynton, C. (1997). Frequently Asked Questions about
Color.
Rabiner, L. (1989). A tutorial on hidden Markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 53(3):257286.
Ramesh, D. and Meer, P. (2000). Real-Time Tracking
of Non-Rigid Objects Using Mean Shift. In IEEE
Proc. Computer Vision and Pattern Recognition 2007
(CVPR), volume 2, pages 142–149.
Scharstein, D. and Szeliski, R. (2002). A Taxonomy and
Evaluation of Dense Two-Frame Stereo Correspon-
dence Algorithms. International Journal of Computer
Vision, 47(1):7–42.
Skarbek, W. and Koschan, A. (1994). Colour image
segmentation-a survey.
Viola, P. and Jones, M. (2001). Rapid Object Detection us-
ing a Boosted Cascade of Simple. In IEEE Proc. Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages I511–
I518.
Welch, G. and Bishop, G. (1995). An introduction to the
Kalman filter.
Wu, S. and Li, Y. (2009). Flexible signature descriptions for
adaptive motion trajectory representation, perception
and recognition. Pattern Recognition, 42(1):194–214.
VISAPP 2010 - International Conference on Computer Vision Theory and Applications
348