VECTOR SEGMENTATION OF VOLUMETRIC IMAGE DATA - Tetrahedral Meshing Constrained by Image Edges

Michal Spanel, Premysl Krsek, Miroslav Svub, Vit Stancl

2010

Abstract

In this paper, a vector segmentation algorithm of volumetric data based on the 3D Delaunay triangulation is presented. A modified variational meshing method is used to adapt tetrahedral mesh to the underlying CT/MRI volumetric data. Moreover, to classify tetrahedra in the mesh into regions whose characteristics are similar, a clustering scheme viewing the mesh as undirected graph with edges weighted according to similarity of tetrahedra is discussed.

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. (2005). Variantional tetrahedral meshing. ACM Trans. Graph., 24(3):617-625.
  2. Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In IEEE Transactions on PAMI, 26(9):1124-1137.
  3. Cheng, S. W., Dey, T. K., Edelsbrunner, H., Facello, M. A., and Teng, S. H. (1999). Sliver exudation. In In Proc.
  4. 15th ACM Symp. Comput. Geom., pages 1-13.
  5. Du, G. and Wang, D. (2003). Tetrahedral mesh generation and optimization based on centroidal voronoi tessellations. Inter. Journal on Numerical Methods in Engineering, 56(9):1355-1373.
  6. George, P. L. and Borouchaki, H. (1998). Delaunay Triangulation and Meshing: Application to Finite Elements. Editions HERMES, Paris, France.
  7. Gevers, T. (2002). Adaptive image segmentation by combining photometric invariant region and edge information. In IEEE Trans. on Pattern Analysis and Machine Intelligence, volume 24.
  8. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH'87, volume 21, Anaheim. Computer Graphics.
  9. Owen, S. (1998). A survey of unstructured mesh generation technology. In Proceedings of the Seventh International Meshing Roundtable, Dearborn, Michigan. Sandia National Laboratories.
  10. Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. Computational Geometry: Theory and Applications, 22:21-74.
  11. Smith, S. M. and Brady, J. M. (1996). Susan - a new approach to low level image processing. Inter. Journal of Computer Vision.
  12. Spanel, M., Krsek, P., Svub, M., Stancl, V., and Siler, O. (2007). Delaunay-based vector segmentation of volumetric medical images. In In Proc. of CAIP 2007, pages 261-269. LNCS 4673.
Download


Paper Citation


in Harvard Style

Spanel M., Krsek P., Svub M. and Stancl V. (2010). VECTOR SEGMENTATION OF VOLUMETRIC IMAGE DATA - Tetrahedral Meshing Constrained by Image Edges . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 134-138. DOI: 10.5220/0002833201340138


in Bibtex Style

@conference{grapp10,
author={Michal Spanel and Premysl Krsek and Miroslav Svub and Vit Stancl},
title={VECTOR SEGMENTATION OF VOLUMETRIC IMAGE DATA - Tetrahedral Meshing Constrained by Image Edges},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={134-138},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002833201340138},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - VECTOR SEGMENTATION OF VOLUMETRIC IMAGE DATA - Tetrahedral Meshing Constrained by Image Edges
SN - 978-989-674-026-9
AU - Spanel M.
AU - Krsek P.
AU - Svub M.
AU - Stancl V.
PY - 2010
SP - 134
EP - 138
DO - 10.5220/0002833201340138