lute norm. IEEE Transactions on Signal Processing,
45(4):913–917.
Aujol, J.-F. and Chambolle, A. (2005). Dual norms and
image decomposition models. International Journal
of Computer Vision, 63(1):85–104.
Aujol, J.-F., Gilboa, G., Chan, T. F., and Osher, S. (2006).
Structure-texture image decomposition - modeling, al-
gorithms, and parameter selection. International Jour-
nal of Computer Vision, 67(1):111–136.
Bar, L., Sochen, N. A., and Kiryati, N. (2005). Image de-
blurring in the presence of salt-and-pepper noise. In
Kimmel, R., Sochen, N. A., and Weickert, J., editors,
Scale-Space, volume 3459 of Lecture Notes in Com-
puter Science, pages 107–118. Springer.
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P.,
and Osher, S. (2007). Fast global minimization of the
active contour/snake model. Journal of Mathematical
Imaging and Vision, 28:151–167.
Cai, J., Chan, R., and Nikolova, M. (2008). Two-phase
methods for deblurring images corrupted by impulse
plus gaussian noise. Inverse Probl. Imaging, 2:187–
204.
Cai, J., Chan, R., and Nikolova, M. (2009). Fast two-
phase image deblurring under impulse noise. Journal
of Mathematical Imaging and Vision.
Chambolle, A. (2004). An algorithm for total variation min-
imization and applications. Journal of Mathematical
Imaging and Vision, 20(1-2):89–97.
Chambolle, A. (2005). Total variation minimization and a
class of binary MRF models. In Workshop on Energy
Minimization Methods in Computer Vision and Pat-
tern Recognition, pages 136–152.
Chan, R., Ho, C., and M.Nikolova (2005). Salt-and-pepper
noise removal by median-type noise detectors and
detail-preserving regularization. IEEE Transactions
on Image Processing, 14(15):1479–1485.
Chan, R., Hu, C., and Nikolova, M. (2004). An iterative
procedure for removing random-valued impulse noise.
IEEE Signal Processing Letters, pages 921–924.
Chan, T., Golub, G., and P.Mulet (1999). A nonlinear
primal-dual method for total variation-based image
restoration. SIAM Journal of Scientific Computing,
20(6):1964–1977.
Darbon, J. and Sigelle, M. (2006a). Image restoration with
discrete constrained total variation part I: Fast and ex-
act optimization. Journal of Mathematical Imaging
and Vision, 26(3):261–271.
Darbon, J. and Sigelle, M. (2006b). Image restoration with
discrete constrained total variation part II: Levelable
functions, convex priors and non convex cases. Jour-
nal of Mathematical Imaging and Vision, 26(3):277–
291.
De Haan, G. and Lodder, R. (2002). De-interlacing of video
data using motion vectors and edge information. In
International Conference on Consumer Electronics,
pages 70–71.
Fortin, M. and Glowinski, R. (1983). Augmented La-
grangian Methods: Application to the Numerical So-
lution of Boundary-Value Problems. North-Holland,
Amsterdam.
Fu, H., Ng, M. K., Nikolova, M., and Barlow, J. L. (2006).
Efficient minimization methods of mixed l2-l1 and l1-
l1 norms for image restoration. SIAM J. Scientific
Computing, 27(6):1881–1902.
Glowinski, R. and Tallec, P. L. (1989). Augmented La-
grangian and Operator-splitting Methods in Nonlinear
Mechanics. SIAM, Philadelphia.
Koko, J. (2008). Uzawa block relaxation domain decompo-
sition method for the two-body contact problem with
Tresca friction. Comput. Methods. Appl. Mech. En-
grg., 198:420–431.
Koko, J. and Jehan-Besson, S. (2009). An augmented
lagrangian method for TVg+L1-norm minimization.
Technical Report RR-09-07, Laboratory LIMOS.
Nikolova, M. (2004). A variational approach to remove
outliers and impulse noise. Journal of Mathematical
Imaging and Vision, 20(1-2):99–120.
Nikolova, M., Esedoglu, S., and Chan, T. F. (2006). Al-
gorithms for finding global minimizers of image seg-
mentation and denoising models. SIAM Journal of Ap-
plied Mathematics, 66(5):1632–1648.
Rudin, L. and Osher, S. (1994). Total variation based im-
age restoration with free local constraints. In ICIP,
volume 1, pages 31–35, Austin, Texas.
Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total
variation based noise removal algorithms. Physica D.,
60:259–268.
FAST DUAL MINIMIZATION OF WEIGHTED TV + L1-NORM FOR SALT AND PEPPER NOISE REMOVAL
75