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Abstract: Eigen values evaluation is an integral but computation-intensive part for many image and signal processing 

applications. Modified Gram-Schmidt Orthogonalization (MGSO) is an efficient method for evaluating the 

Eigen values in face recognition algorithms. MGSO applies normalization of vectors in its iterative 

orthogonal process and its accuracy depends on the accuracy of normalization. Using software, floating-

point data types and floating-point operations are applied to minimize rounding and truncation effects. 

Hardware support for floating-point operations may be very costly in execution time per operation and also 

may increase power consumption. In contrast, lower-cost fixed-point arithmetic reduces execution times and 

lowers the power consumption but reduces slightly the precision. Normalization involves square root 

operations in addition to other arithmetic operations. Hardware realization of the floating-point square root 

operation may be prohibitively expensive because of its complexity. This paper presents three architectures, 

namely ppc405, ppc_ip and pc_pci, that employ fixed-point hardware for the efficient implementation of 

normalization on an FPGA. We evaluate the suitability of these architectures based on the needed frequency 

of normalization. The proposed architectures produce a less than 10-3 error rate compared with their 

software-driven counterpart for implementing floating-point operations. Furthermore, four popular 

databases of faces are used to benchmark the proposed architectures. 

1 INTRODUCTION 

Eigen values are used for the extraction of features 

in face recognition. Their evaluation is a time 

consuming but important part of pattern recognition 

algorithms (Niklas, P., and Franz-Erich, etl.) 

(Stavros, P, Peter, L, and Miroslaw, B.). Gram-

Schmidt orthogonalization (GSO) is fast and deals 

with an orthogonal space for the computation of 

Eigen values (Sharma, A., and Paliwal, K.K.). 

Orthogonality usually provides better decision 

power in face recognition. However, GSO may face 

convergence problems with the co-variance matrix 

of high-resolution images. The modified GSO 

(MGSO) approach used in fast principal component 

analysis (FPCA) does not increase the time 

complexity while solving the convergence problem 

(Sajid, I., Ahmed, M.M., and Taj, I.). However, 

MGSO requires additional vector normalization.  

Normalization is an essential but time consuming 

part of MGSO, and is applied iteratively. Euclidian 

length normalization that applies floating-point 

operations may provide more accurate results in face 

recognition (Sajid, I., Ahmed, M.M., and Taj, I.) 

(He, X., and Yan, S etl.). But floating point 

operations are costly in hardware, especially the 

square root; they use more on-chip resources and 

consume more cycles as compared to integer 

operations (Sajid, I., Ahmed, M.M. etl.) (Oberstar, 

E. L.) (Liao, J.R.) (Yamin, L., and Wanming, C.) 

(Peter, S., and Mirian, L.). On the other hand, fixed-

point arithmetic hardware can be used to provide 

efficient calculations with precision near that of 

floating-point. The precision of fixed point depends 

upon the chosen Q.N format (Wilkinson, J. H.) 

(Ortega, J.M.) (Burden, R. L., and Faires, J. D.).  

Normalization involves a square root operation 

in addition to other arithmetic operations.  A fixed-
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point square root operation is more time and power 

efficient than its floating-point counterpart, but it 

loses slightly in precision due to its algorithmic 

complexity. For the sake of efficiency, non-restoring 

algorithms for the fixed-point square root operation 

have been implemented on FPGAs (Piromsopa, K., 

and Aporntewan, C. etl.). Non-restoring can provide 

precision up to three decimal places for an operand 

less than unity, which is the observed operand range 

in normalization for MGSO.   

Co-design methodologies are employed to 

achieve trade-offs among resource utilization, 

execution time and power consumption. The 

software realization of Euclidian length 

normalization has time complexity O (n logn) 

(Stavros, P, Peter, L, and Miroslaw, B.) (Gavish, B., 

and Sridhar,S.), where n is the rank of the square 

matrix. This complexity can be reduced using a co-

design process to involve fixed-point arithmetic, 

pipelining and instruction-level parallelism (ILP) for 

arithmetic operations (Chin-Chin, H. and Shin-Ichi, 

Y. etl.) (Benkrid, K., Crookes, D. etl.). 

In this paper, three novel co-design architectures 

are presented that use fixed-point operations, 

pipelining and ILP for vector and matrix 

normalization on FPGAs. Our analysis of power 

consumption and execution time for these 

architectures reveals a desirable/optimal way of 

implementing normalization. We validate the 

proposed design methodology via benchmarking that 

involves image normalization for four popular 

databases of human faces. Our results show a close 

to 20% improvement in execution time when using 

just 3% additional power, while keeping the 

precision within three decimal places which has 

been proven to be adequate for face recognition with 

MGSO (Giraud, L. and Langou, J. etl.). 

2 ARCHITECTURES 

2.1 Software Implementation: ppc405 

The ppc405 architecture of three layers for matrix 

and vector normalization is implemented on an 

FPGA. The application layer is composed of the data 

producer (DP), the data consumer (DC) and the 

fixed-point normalization unit (FxN). DP and DC 

are in charge of providing data to the FxN unit and 

getting back data from the real-time operating 

system (RTOS) layer, respectively. FxN is a 

computation unit that also translates floating-point 

instructions into sequences of fixed-point integer 

instructions determined at compilation. To facilitate 

these interactions, two FIFO queues are involved in 

one-way communication. The hardware in the third 

layer does not contain floating-point units (FPUs) 

since it targets fixed-point operations created by 

FxN. FPUs are avoided because of their high cost in 

FPGA resources and per-operation large number of 

machine cycles. Thus, ppc405 presents a more time 

and power efficient architecture than an FPU-based 

architecture. However, a pure software 

implementation of the required conversion of 

floating-point operations will prove much slower 

compared to an implementation that utilizes 

appropriate fixed-point hardware components. 

Therefore, an efficient hardware implementation of 

the FxN unit becomes our primary objective. 

2.2 IP-based Architecture: ppc_ip 

The ppc_ip presents our second architecture which is 

intellectual property (IP) based. For the new 

architecture, the FxN unit of Section 2.1 was 

designed in the VHDL language and the name 

IP_NM was assigned to it. This IP core was then 

integrated into the processor local bus (PLB) of the 

PowerPC core processor as IP_FxN instead of 

integrating it with the on-chip peripheral bus (OPB) 

of the previous architecture. IP_FxN requires pairs 

of multiplication and add/subtraction operations to 

be carried out in an indivisible manner, similar to 

MAC (multiply-and-accumulate) operations. In 

addition to the MAC operation, division and square 

root operations are required as well. IP_FxN was 

designed towards efficiency by considering the 

architecture of the target FPGA device XC2VP30. 

The fixed-point square root (FxSqr) operation is 

not advisable to be implemented within IP_FxN 

because FxSqr needs a dedicated implementation on 

the FPGA. Nested hardware processes require stack 

memory for the call back function pointer. The 

alternative is to design FxSqr in a separate process 

and connect it through FIFOs with IP_FxN. This 

will remove the need of the stack memory and its 

associated controller. The stack memory may be a 

less expensive solution but its management requires 

customization of the embedded core’s functionality, 

a task which is cumbersome. This architecture 

moves the fixed-point normalization module from 

the software layer of ppc405 to the hardware layer. 

This increases slightly the consumed resources. On 

the other hand, it improves significantly the 

execution time for desired operations which is our 

primary objective. Thus, the ppc_ip architecture is 

more time and power efficient than the ppc405 

architecture. The resources consumed by the 
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hardware layer of ppc_ip can be reduced further by 

appropriately eliminating the processor core from 

the hardware layer. 

2.3 PCI-based Architecture: pc_pci 

Figure 1 presents our PCI-based FPGA architecture 

without a PowerPC embedded processor core. In this 

architecture, only the computational unit IP_FxN is 

placed inside the FPGA device. The data producer 

(DC) is implemented by a C shell on the host 

machine and the PCI bus acts as the interface 

between DC and the FPGA. The execution time can 

be estimated using the following Equation: 

ippifHex ttttt     (1) 

Where tex is the execution time for the normalization 

of the matrix or vector, tH is the time consumed by 

the host application, tif is the time taken by the two 

ends of the hardware layer for data transfers, tp is the 

time consumed on the PCI bus and tip is the time 

taken by the IP core. The IP core has the same 

design as in ppc_ip architecture.  The two ends in 

the hardware layer are: (a) the FPGA on the 

Annapolis MicroSystems WildStar II-PCI board 

with two Xilinx Virtex II XC2V6000-5 user-

configurable FPGAs; and (b) the software controller 

at the PC OS side. The PCI bus operates at 133 MHz 

and can send 32-bit data in 8 nanoseconds for a 

matrix of rank 20. But usually the PCI bus takes 

more time due to some acknowledgement signals 

and possible packet loss overheads. It has been 

observed that tp is about 6.4 microseconds for a 

square matrix of rank 20. On the other hand, tH 
dominates in Equation (1) for this architecture 

because the respective process executes in a C shell 

on the PC. This architecture uses the minimum 

resources on the FPGA because it does not require 

FIFOs and an embedded core. Furthermore, it could 

be beneficial to improve the FPGA frequency 

sufficiently, so that the ratio of tH  to other terms can 

be reduced. 

3 EXPERIMENTS, RESULTS AND 

COMPARATIVE ANALYSIS 

The accuracy of normalization depends upon Q.N 

format and values of the matrix elements. The 

proposed architectures were designed for the 

normalization of matrices used in face recognition 

tasks. In this regard, four popular databases with 

human faces have been selected to validate our 

design methodology. They are the Yale, Olivetti 

Research Laboratory (ORL), Feret database and 

CAS-PEAL databases (Yale Database) (Face 

Database) (Wen,G., and Bo, Ce. etl.) (Phillips, P. J., 

Moon. etl.). 

The Yale faces database contains 165 images of 

15 subjects, with 11 images per subject. The ORL 

faces database contains 400 images of 40 personnel. 

These images have different variations in facial 

expression, like open or closed eyes, smiling or non-

smiling, and facial details such as with glasses or 

without glasses. CAS-PEAL is a Chinese faces 

database containing 99,594 images of 1040 subjects. 

A total of nine cameras were used to simultaneously 

capture images across different poses, facial 

expressions, lighting and angles. Feret is a big 

database containing 14,126 images of 1199 subjects.  

The performance of the proposed architectures is 

judged based on the parameters of accuracy, 

execution time and power consumption. A set of 

twenty randomly selected images from the four 

databases were tested to investigate the performance 

of our implementations. The images in these four 

databases were captured with different resolutions.  

To measure the accuracy of the implementations, 

the root mean square (RMS) metric is used. Initially, 

values are recorded using the proposed fixed-point 

arithmetic system with Matlab for the IEEE754 

double-precision floating-point standard. The 

minimum, maximum and average RMS values are 

calculated for the said databases as shown in Figure 

2. In Figure 2, the highest error is produced by Yale 

whereas the minimum RMS error is for Feret. The 

average histograms of gray levels for randomly 

selected images from these databases could reveal 

the error variation in the proposed system. The 

Feret-based histogram shows a relatively close to 

normal Gaussian distribution curve as shown in 

Figure 3. Figure 3 shows average histogram of 

twenty images from the said databases. Gaussian 

distribution of pixel values suits our proposed 

approach because truncation errors due to the least 

significant digits are small. CAS-PEAL also follows 

the Gaussian curve but its frequency of peaks is low 

compare to Feret. On the other hand, ORL and Yale 

have the smallest distribution of values in the central 

region than Feret and CAS_PEAL. Furthermore 

their maximum frequency of central region is 

smaller than Feret and CAS-PEAL. The RMS error 

range for all the databases is on the order of 10-3 as 

shown in Figure 2, which is quite acceptable for face 

recognition using MGSO. 
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Figure 1: pc_pci architecture. 

Table 1 shows the execution time and power 

dissipation comparison of our architectures 

presented in Section 2. The architectures were 

evaluated based on their required FPGA resources 

and the time taken to complete the normalization 

process. The power dissipation was estimated using 

Xilinx data sheets and the Xilinx XPower tool in the 

integrated simulation environment (ISE). The 

execution time for software processes was noted 

using the Xilinx embedded development kit (EDK) 

and the execution time of IP_FxN was estimated 

using the synthesis report. FIFOs and the PCI bus 

were used for communication purposes. The FIFOs 

were implemented in hardware and were 

incorporated in the IP_FxN module. The PCI bus is 

not part of IP_FxN in pc_pci. Therefore, the time 

taken by  pc_pci is on the higher side compared to 

ppc_ip. The PCI time depends upon the 

specifications of the host machine. 

In Table 1, ppc405. ppc_ip and  pc_pci are the 

architectures proposed in Sections 2.1, 2.2 and 2.3, 

respectively. ppc405 cannot be implemented using 

pipelining and ILP techniques because this 

architecture uses Fx_N in the software layer. The 

ppc_ip and pc_pci architectures were implemented 

with pipelining and loop unrolling (ILP) techniques. 

Therefore, seven implementation scenarios can be 

seen in Table 1. Architectures employing pipelining 

and ILP are more time efficient than the same 

architectures without pipelining and ILP. On the 

other hand, the maximum power is consumed by 

ppc_ip (PL_ILP) and the minimum power by pc_pci 

(WPL). The data feeding time for the ppc405 and 

ppc_ip architectures is consumed by the DP 

component; in the case of the pc_pci architecture, 

this time is consumed by the PCI bus and the DP 

unit. The bandwidth of the PCI bus depends upon 

the host machine. However, the PCI bus time is sig- 

nificantly high compared to using DP. 

 

Figure 2: Error Analysis of fixed-point normalization for 

the four databases. 

In MGSO, approximately 4000 normalization 

operations are required for a matrix of rank 20. The 

ppc_ip (PL_ILP) architecture consumes the 

minimum execution time for a matrix of rank 20. 

But a matrix of rank 200 requires approximately a 

fraction of a million normalization operations to 

complete MGSO. In this situation, the ppc_ip 

(PL_ILP) and pc_pci (PL_ILP) architectures 

consume almost similar execution times. On the 

other hand, pc_pci (PL_ILP) consumes 62% less 

power than the ppc_ip (PL_ILP) architecture.  Most 

of the image and signal processing applications 

require thousands of thousands of normalization 

operations. Thus, pc_pci (PL_ILP) proves to be the 

optimal solution for FPGA-based normalization 

considering the accuracy, execution time and power 

consumption. 

Moments, which are projections of the image 

function to the basis function, are used in object 

tracking. High speed normalization of moments has 

been has been implemented on the XCV1000 device 

using parallel accumulators. It resulted in a 

maximum calculation of 190 frames per second for 

images having resolution 512x512 (Stavros, P, Peter, 

L, and Miroslaw, B.). On the other hand, the 

proposed architecture using a smaller XC2V30P 

device produces 190 frames for the same resolution 

in 0.116 seconds. Our system operates 

approximately nine times faster than the one 

proposed in (Stavros, P, Peter, L, and Miroslaw, B.). 
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Figure 3: Average histogram of twenty images from four face databases. 

Table1: Comparisons of execution time, and resource and power consumptions for the XC2VP30ff896c FPGA 

XC2VP30ff896c FPGA. 

  Architectures 

  Software-Based Unpipelined (WPL) Pipelined (PL) PL_ILP 

Performance  

Parameters 

PPC405 PPC_IP PC_PCI PPC_IP PC_PCI PPC_IP PC_PCI 

R
es

o
u

rc
es

 Slices  1979 4587 1750 4615 1765 4641 1794 

LUTs  2266 7399 3402 7471 3443 7514 3489 

Flip-flops  1981 2709 930 2710 936 2900 1157 

mWatts 5.78 13.39 5.11 13.48 5.15 13.55 5.24 

E
x

ec
. 

T
im

e 
(1

 

O
p

er
) 

Data feeding 

time (µs) 346.28 346.28 15064 346.28 15064 346.28 15064 

Exec. 

Time(µs)  232.15 11.3 13.2 11.11 12.15 9.32 9.32 

Total time 

(µs) 578.43 357.58 15077.2 357.385 15076.2 355.6 15073.3 

E
x

ec
. 

T
im

e 

(1
0

0
0

 O
p

er
) 

Data feeding 

time (µs) 346.28 346.28 15064 346.28 15064 346.28 15064 

Exec. 

Time(µs)  232148.32 11295 13200 11105 12150 9320 9320 

Av. Time 

(µs) 232.49 11.64 28.26 11.45 27.21 9.67 24.38 

E
x

ec
. 

T
im

e 
 

(1
0

6
 O

p
er

) 

Data feeding 

time (µs) 346.28 346.28 15064 346.28 15064 346.28 15064 

Exec. 

Time(µs)  2.32E+10 1.12E+08 1.32E+07 1.10E+07 1.20E+07 9.32E+06 9.32E+06 

Av. Time 

(µs) 232.15 11.3 13.22 11.1 12.17 9.32 9.33 

E
x

ec
. 

T
im

e 
(1

0
8
 

O
p

er
) 

Data feeding 

time (µs) 346.28 346.28 15064 346.28 15064 346.28 15064 

Exec.Time 

(µs) 2.32E+10 1.13E+08 1.32E+08 1.10E+08 1.20E+08 9.32E+07 9.30E+07 

Av. Time 

(µs) 232.14833 1.129504 1.32 1.1105 1.21515 0.932004 0.93215 
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4 CONCLUSIONS 

Three layers for three FPGA-based architectures 

were proposed targeting at the normalization of a 

matrix or vector. These architectures were designed 

and analyzed on the basis of accuracy, execution 

time and power consumption. The impact of 

pipelining and instruction level parallelism was 

studied as well using an architecture co-design 

methodology. The host-to-PCI based architecture 

provides an optimum combination of accuracy, 

processing time and power consumption. The pc_pci 

architecture provides a more than 200 times faster 

solution than the software-based solution running on 

an embedded system and is 62% more efficient than 

the IP-based architecture. Furthermore, this 

architecture is about nine times faster than a 

previously proposed architecture while also yielding 

an accuracy of within 10-3 as compared to a 

hardware-based floating-point architecture. 
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