ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGES

Birgit Möller, Oliver Greß, Nadine Stöhr, Stefan Hüttelmaier, Stefan Posch

2010

Abstract

Microscope imaging is an indispensable tool in modern systems biology. In combination with fully automatic image analysis it allows for valuable insights into biological processes on the sub-cellular level and fosters understanding of biological systems. In this paper we present two new techniques for automatic segmentation of cell areas and included sub-cellular particles. A new cascaded and intensity-adaptive segmentation scheme based on coupled active contours is used to segment cell areas. Structures on the sub-cellular level, i.e.~stress granules and processing bodies, are detected applying a scale-adaptive wavelet-based detection technique. Combining these results allows for complementary analysis of biological processes. It yields new insights into interactions between different particles and distributions of particles among different cells. Our experimental evaluations based on ground-truth data prove the high-quality of our segmentation results regarding these aims and open perspectives towards deeper insights into biological systems on the sub-cellular level.

References

  1. Bolte, S. and Cordelieres, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224(3):213-232.
  2. Chan, T. and Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277.
  3. Desolneux, A., Moisan, L., and Morel, J.-M. (2003). A grouping principle and four applications. IEEE Trans. PAMI, 25(4):508-513.
  4. Dufour, A., Meas-Yedid, V., Grassart, A., and Olivo-Marin, J. (2008). Automated quantification of cell endocytosis using active contours and wavelets. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on Pattern Recognition.
  5. Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, N., Olivo-Marin, J., and Zimmer, C. (2005). Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Transactions on Image Processing, 14(9):1396-1410.
  6. Dzyubachyk, O., Niessen, W., and Meijering, E. (2007). A variational model for level-set based cell tracking in time-lapse fluorescence microscopy images. In IEEE International Symposium on Biomedical Imaging. IEEE, Piscataway.
  7. Dzyubachyk, O., Niessen, W., and Meijering, E. (2008). Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images. In IEEE International Symposium on Biomedical Imaging. IEEE, Piscataway.
  8. Eulalio, A., Behm-Ansmant, I., and Izaurralde, E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews Molecular Cell Biology, 8:9- 22.
  9. Figueiredo, M. A. T. and Nowak, R. D. (2001). Waveletbased image estimation: an empirical bayes approach using jeffrey's noninformative prior. IEEE Trans. IP, 10(9):1322-1331.
  10. Genovesio, A., Liedl, T., Emiliani, V., Parak, W., CoppeyMoisan, M., and Olivo-Marin, J. (2006). Multiple Particle Tracking in 3-D+ Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots. IEEE Transactions on Image Processing, 15(5).
  11. Greß, O., Möller, B., Stöhr, N., Hüttelmaier, S., and Posch, S. (2010). Scale-adaptive wavelet-based particle detection in microscopy images. In Proceedings of the Workshop Bildverarbeitung für die Medizin (BVM). Springer. accepted for publication.
  12. Kass, M., Witkin, A. P., and Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331.
  13. Olivo-Marin, J. (2002). Extraction of spots in biological images using multiscale products. Pattern Recognition, 35(9):1989-1996.
  14. Smal, I., Niessen, W., and Meijering, E. (2008). A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering. In 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, pages 264-267.
  15. Xavier, J., Schnell, A., Wuertz, S., Palmer, R., White, D., and Almeida, J. (2001). Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. Journal of microbiological methods, 47(2):169.
  16. Yamasaki, S. and Anderson, P. (2008). Reprogramming mRNA translation during stress. Curr. Opin. Cell Biol., 20:222-226.
  17. Zimmer, C. and Olivo-Marin, J. (2005). Coupled parametric active contours. IEEE transactions on pattern analysis and machine intelligence, 27(11):1838-1842.
Download


Paper Citation


in Harvard Style

Möller B., Greß O., Stöhr N., Hüttelmaier S. and Posch S. (2010). ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 97-106. DOI: 10.5220/0002849100970106


in Bibtex Style

@conference{visapp10,
author={Birgit Möller and Oliver Greß and Nadine Stöhr and Stefan Hüttelmaier and Stefan Posch},
title={ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={97-106},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002849100970106},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGES
SN - 978-989-674-029-0
AU - Möller B.
AU - Greß O.
AU - Stöhr N.
AU - Hüttelmaier S.
AU - Posch S.
PY - 2010
SP - 97
EP - 106
DO - 10.5220/0002849100970106