approaches. Also we report the identification rates of
the face, iris and ear matchers on the CMC curves to
show the differences.
6 CONCLUSIONS
The design of a multimodal biometric system is a
challenging task due to heterogeneity of the
biometric sources in terms of the type of
information, the magnitude of information content,
correlation among the different sources and
conflicting performance requirements of the
practical applications. Extensive research has been
done to identify better methods to combine the
information obtained from multiple sources. In this
research, we combine face, ear and iris biometric
information using rank level fusion method. We
introduce Markov chain approach for biometric rank
fusion and obtain better identification rate over other
rank fusion approaches. Thus, Markov chain method
can be a reliable solution of integrating biometric
ranking lists to obtain a consensus rank list and can
be effectively used in various security systems.
REFERENCES
Agresti, A., 2007. An introduction to categorical data
analysis. Wiley-Interscience, 2
nd
edition.
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J.,
1997. Eigenfaces vs. Fisherfaces: Recognition using
class specific linear projection. IEEE Transaction on
Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pages 711-720.
Bhatnagar, J., Kumar, A., and Saggar, N., 2007. A novel
approach to improve biometric recognition using rank
level fusion. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 1-6,
Minneapolis, USA.
Borda, J. C., 1781. M´emoire sur les ´elections au scrutin.
Histoire de l’Acad´emie Royale des Sciences, France.
Bubeck, U. M., 2003. Multibiometric authentication – An
overview of recent developments. San Diego
University.
http://www.thuktun.org/cs574/papers/multibiometrics.
pdf
CASIA: CASIA iris image database, 2004. Retrieved on
May 23, 2008. www.sinobiometrics.com
Chandran, J. G. C., and Rajesh, R. S., 2009. Performance
analysis of multimodal biometric system
authentication. IJCSNS International Journal of
Computer Science and Network Security, vol. 9, no.3,
pages 290-296.
Condorcet, M.-J., 1785. E´ssai sur l’application de
l’analyse a` la probabilite´ des de´cisions rendues a`
la pluralite´ desvoix.
Copeland, H., 1951. A reasonable social welfare function.
Mimeo, University of Michigan, USA.
Daugman, J. G., 2004. How iris recognition works. IEEE
Transaction on Circuits and Systems for Video
Technology, vol. 14, no. 1, pages 21-30.
Dunstone, T., and Yager, N., 2009. Biometric system and
data analysis: Design, evaluation, and data mining.
Springer, New York.
Dwork, C., Kumar, R., Naor, M., and Sivakumar, D.,
2001. Rank aggregation methods for the web. In Proc.
of 10
th
International World Wide Web Conference,
pages 613–622, Hong Kong, China.
Ho, T. K., Hull. J. J., and Srihari, S. N., 1994. Decision
combination in multiple classifier systems. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
vol. 16, no. 1, pages 66-75.
Kim, J., Cho, S., Kim, D., and Chung, S.-T., 2006. Iris
recognition using a low level of details. Lecture Notes
in Computer Science, vol. 4292, pages 196-204,
Springer.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K., 2004. In Proc. International Conference
on Biometric Authentication, pages 1-7, Hong Kong,
China.
Monwar, M. M., and Gavrilova, M., 2009. A Multimodal
Biometric System using Rank Level Fusion Approach.
IEEE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics (special issue on Cognitive
Informatics and Cybernetics), vol. 39, no. 4, pages
867-878.
Nandakumar, K., Jain, A.K., and Ross A., 2009. Fusion in
multibiometric identification systems: What about the
missing data? In M. Tistarelli and M.S. Nixon,
Editors, International Conference on Biometrics, vol.
LNCS 5558, pages 743–752, Springer.
Phillips, P. J., Moon, H., and Rauss, P., 1998. The FERET
database and evaluation procedure for face recognition
algorithms. Image and Vision Computing, vol. 16. no.
5, pages 295-306.
Revett, K., 2008. Behavioral biometrics: A remote access
approach. Wiley, West Sussex, UK.
Ross, A., Nandakumar, K., and Jain, A. K., 2006.
Handbook of multibiometrics. Springer, New York.
Turk, M., and Pentland, A., 1991. Eigenfaces for
recognition. Journal of Cognitive Science, pages 71-
86.
USTB ear database, China. Retrieved on May 11, 2008.
http://www.ustb.edu.cn/resb/
Wildes, R., 1997. Iris recognition: An emerging biometric
technology. In Proc. IEEE, vol. 85, no. 9, pages 1348-
1363.
Zhao, W., Chellappa, R., and Nandhakumar, N., 1998.
Empirical performance analysis of linear discriminant
classifiers. In Proc. 1998 Conference on Computer
Vision and Pattern Recognition, pages 164–169, Santa
Barbara, CA.
ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION
463