neighborhood information within each scale and re-
gion hierarchical information between the scales, us-
ing global image features as well as local ones for ob-
servations in the model. This model only exploits up
to second-order cliques, which makes learning and in-
ference much easier. This model combines different
views on the data by layer-specific potentials and the
hierarchical structure accounting for longer range de-
pendencies.
REFERENCES
Barnard, K., Duygulu, P., Freitas, N. D., Forsyth, D., Blei,
D., and Jordan, M. (2003). Matching Words and Pic-
tures. In JMLR, volume 3, pages 1107–1135.
Drauschke, M. (2009). An Irregular Pyramid for Multi-
scale Analysis of Objects and their Parts. In 7th IAPR-
TC-15 Workshop on Graph-based Representations in
Pattern Recognition, pages 293–303.
Drauschke, M., Schuster, H.-F., and F
¨
orstner, W. (2006).
Detectability of Buildings in Aerial Images over Scale
Space. In PCV’06, IAPRS 36 (3), pages 7–12.
Gould, S., Rodgers, J., Cohen, D., Elidan, G., and Koller,
D. (2008). Multi-Class Segmentation with Relative
Location Prior. IJCV, 80(3):300–316.
He, X., Zemel, R., and Carreira-Perpin, M. (2004). Multi-
scale Conditional Random Fields for Image Labeling.
In CVPR, pages 695–702.
Kohli, P., Kumar, M. P., and Torr, P. (2007). P3 & Be-
yond: Solving Energies with Higher Order Cliques.
In CVPR, pages 1–8.
Kohli, P., Ladicky, L., and Torr, P. (2009). Robust Higher
Order Potentials for Enforcing Label Consistency.
IJCV, 82(3):302–324.
Kor
ˇ
c, F. and F
¨
orstner, W. (2008). Interpreting Terrestrial
Images of Urban Scenes using Discriminative Ran-
dom Fields. In 21st ISPRS Congress, IAPRS 37 (B3a),
pages 291–296.
Kumar, S. and Hebert, M. (2003). Discriminative Random
Fields: A Discriminative Framework for Contextual
Interaction in Classification. In ICCV, pages 1150–
1157.
Ladicky, L., Russell, C., and Kohli, P. (2009). Associative
Hierarchical CRFs for Object Class Image Segmenta-
tion. In ICCV, pages 1–8.
Lafferty, J., McCallum, A., and Pereira, F. (2001). Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. In ICML, pages
282–289.
Lazaridis, G. and Petrou, M. (2006). Image Registra-
tion using the Walsh Transform. Image Processing,
15(8):2343–2357.
McCallum, A., Rohanimanesh, K., and Sutton, C. (2003).
Dynamic Conditional Random Fields for Jointly La-
beling Multiple Sequences. In NIPS Workshop on Syn-
tax, Semantics and Statistic.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.
Petrou, M. and Bosdogianni, P. (1999). Image Processing:
The Fundamentals. Wiley.
Plath, N., Toussaint, M., and Nakajima, S. (2009). Multi-
Class Image Segmentation using Conditional Random
Fields and Global Classification. In ICML, pages 817–
824.
Reynolds, J. and Murphy, K. (2007). Figure-ground seg-
mentation using a hierarchical conditional random
field. In 4th Canadian Conference on Computer and
Robot Vision, pages 175–182.
Schnitzspan, P., Fritz, M., Roth, S., and Schiele, B.
(2009). Discriminative Structure Learning of Hier-
archical Representations for Object Detection. In
CVPR, pages 2238–2245.
Schnitzspan, P., Fritz, M., and Schiele, B. (2008). Hier-
archical Support Vector Random Fields: Joint Train-
ing to Combine Local and Global Features. In ECCV,
pages 527–540.
Shotton, J., Winnand, J., Rother, C., and Criminisi, A.
(2006). Textonboost: Joint Appearance, Shape and
Context Modeling for Multi-Class Object Recognition
and Segmentation. In ECCV, pages 1–15.
Sutton, C. and McCallum, A. (2005). Piecewise Training
for Undirected Models. In 21th Ann. Conf. on Uncer-
tainty in AI, pages 568–575.
Toyoda, T. and Hasegawa, O. (2008). Random Field Model
for Integration of Local Information and Global Infor-
mation. PAMI, 30(8):1483–1489.
Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt,
M. W., and Murphy, K. P. (2006). Accelerated Train-
ing of Conditional Random Fields with Stochastic
Gradient Methods. In ICML, pages 969–976.
Yang, L., Meer, P., and Foran, D. J. (2007). Multiple Class
Segmentation using a Unified Framework over Mean-
Shift Patches. In CVPR, pages 1–8.
HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION
469