effects of different speeds on the vibrations.
REFERENCES
Agrawal, M. and Konolige, K. (2006). Real-time localiza-
tion in outdoor environments using stereo vision and
inexpensive GPS. In International Conference on Pat-
tern Recognition (ICPR), volume 3, pages 1063–1068.
Brooks, C. A., Iagnemma, K., and Dubowsky, S. (2005).
Vibration-based terrain analysis for mobile robots. In
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 3415–3420.
Burgard, W., Fox, D., Hennig, D., and Schmidt, T. (1996).
Estimating the absolute position of a mobile robot us-
ing position probability grids. In AAAI National Con-
ference on Artificial Intelligence, volume 2.
Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., and
Bradski, G. R. (2006). Self-supervised monocular
road detection in desert terrain. In Robotics: Science
and Systems.
Ferris, B., H
¨
ahnel, D., and Fox, D. (2006). Gaussian pro-
cesses for signal strength-based location estimation.
In Robotics: Science and Systems.
Girard, A., Rasmussen, C. E., Quinonero-Candela, J., and
Murray-Smith, R. (2003). Gaussian process priors
with uncertain inputs - Application to multiple-step
ahead time series forecasting. In Advances in Neural
Information Processing Systems (NIPS), pages 529–
536.
Iagnemma, K. and Ward, C. C. (2009). Classification-
based wheel slip detection and detector fusion for mo-
bile robots on outdoor terrain. Autonomous Robots,
26(1):33–46.
Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T.
(2007). Active learning with gaussian processes for
object categorization. In IEEE International Confer-
ence on Computer Vision (ICCV), volume 11, pages
1–8.
Ko, J., Klein, D. J., Fox, D., and H
¨
ahnel, D. (2007a). Gaus-
sian processes and reinforcement learning for identifi-
cation and control of an autonomous blimp. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 742–747.
Ko, J., Klein, D. J., Fox, D., and H
¨
ahnel, D. (2007b). GP-
UKF: Unscented Kalman filters with gaussian process
prediction and observationmodels. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), pages 1901–1907.
Li-Juan, L., Hong-Ye, S., and Jian, C. (2007). Generalized
predictive control with online least squares support
vector machines. In Acta Automatica Sinica (AAS),
volume 33, pages 1182–1188.
MacKay, D. J. C. (1998). Introduction to gaussian pro-
cesses. In Bishop, C. M., editor, Neural Networks
and Machine Learning, NATO ASI Series, pages 133–
166. Springer-Verlag.
Rasmussen, C. E. (2002). Combining laser range, color, and
texture cues for autonomous road following. In IEEE
International Conference on Robotics and Automation
(ICRA).
Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning. The MIT Press.
Seyr, M., Jakubek, S., and Novak, G. (2005). Neural net-
work predictive trajectory tracking of an autonomous
two-wheeled mobile robot. In International Federa-
tion of Automatic Control (IFAC) World Congress.
Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2000).
Robust monte carlo localization for mobile robot. Ar-
tificial Intelligence, 128:99–141.
Urtasun, R. and Darrell, T. (2007). Discriminative gaussian
process latent variable models for classification. In In-
ternational Conference on Machine Learning (ICML).
Ward, C. C. and Iagnemma, K. (2007). Model-based wheel
slip detection for outdoor mobile robots. In IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 2724–2729.
Weiss, C., Fr
¨
ohlich, H., and Zell, A. (2006). Vibration-
based terrain classification using support vector ma-
chines. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4429–
4434.
Williams, C. K. I. (2002). Gaussian processes. In The Hand-
book of Brain Theory and Neural Networks. The MIT
Press, 2 edition.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
14