MRI IMAGE ENHANCEMENT - A PDE-based Approach Integrating a Double-well Potential Function for Thin Structure Preservation

A. Histace, M. Ménard

2010

Abstract

Non-linear or anisotropic regularization PDE’s (Partial Differential Equation) raised a strong interest in the field of medical image processing. The benefit of PDE-based regularization methods lies in the ability to smooth data in a nonlinear way, allowing the preservation of important image features (contours, corners or other discontinuities). In this article, we propose a PDE-based method restoration approach integrating a double-well potential as diffusive function. It is shown that this particular potential leads to a particular regularization PDE which makes the integration of prior knowledge about the gradient intensity level to enhance possible. The corresponding method shows interesting properties regarding stability and preservation of fine structures. As a proof a feasibility, results of restoration are presented on natural images to show potentialities of the proposed method. We also address a particular medical application: enhancement of tagged cardiac MRI.

References

  1. Alvarez, L., Guichard, F., Lions, P., and Morel, J. (1992). Image selective smoothing and edge detection by nonlinear diffusion (ii). Arch. Rationnal Mech. Anal., 29(3):845-866.
  2. Axel, L., Chung, S., and Chen, T. (2007). Tagged mri analysis using gabor filters. In Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, pages 684-687.
  3. Catté, F., Coll, T., Lions, P., and Morel, J. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal of Applied Mathematics, 29(1):182-193.
  4. Denney, T. (1999). Estimation and detection of myocardial tags in MR images without user-defined myocardial contours. IEEE Transactions on Medical Imaging, 18(4):330-344.
  5. Deriche, R. and Faugeras, O. (1996). Les edp en traitements des images et visions par ordinateur. Traitement du Signal, 13(6):551-578.
  6. Geman, S. and Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3):367-383.
  7. Histace, A., Cavaro-Ménard, C., Courboulay, V., and Ménard, M. (2005). Analysis of tagged cardiac MRI sequences. Lecture Notes on Computer Science (Proceedings of the 3rd Functional Imaging and Modelling of the Heart (FIMH) Workshop), 3504:404- 413.
  8. Histace, A., Ménard, M., and Cavaro-Ménard, C. (2009). Selective diffusion for oriented pattern extraction: Application to tagged cardiac mri enhancement. Pattern Recognition Letters, 30(15):1356-1365.
  9. Nitzberg, M. and Shiota, T. (1992). Nonlinear image filtering with edge and corner enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(8):826-833.
  10. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anistropic diffusion. IEEE Transcations on Pattern Analysis and Machine Intelligence, 12(7):629-639.
  11. Petitjean, C., Rougon, N., and Cluzel, P. (2005). Assessment of myocardial function: A review of quantification methods and results using tagged MRI. Journal of Cardiovascular Magnetic Resonance, 7(2):501-516.
  12. Rao, A. and Jain, R. (1992). Computerized flow field analysis: Oriented texture fields. Transactions on pattern analysis and machine intelligence, 14(7).
  13. Terebes, R., Lavialle, O., Baylou, P., and Borda, M. (2002). Mixed anisotropic diffusion. In Proceedings of the 16th International Conference on Pattern Recognition, volume 3, pages 1051-4651.
  14. Tschumperle, D. and Deriche, R. (2005). Vector-valued image regularization with pde's: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:506-517.
  15. Tshumperlé, D. and Deriche, R. (2002). Diffusion PDEs on vector-valued images. Signal Processing Magazine, IEEE, 19(5):16-25.
  16. Weickert, J. (1995). Multiscale texture enhancement. In Computer Analysis of Images and Patterns, pages 230-237.
  17. Weickert, J. (1998). Anisotropic Diffusion in image processing. Teubner-Verlag, Stuttgart.
  18. Whitaker, R. and Pizer, S. (1993). A multi-scale approach to nonuniform diffusion. CVGIP:Image Understanding, 57(1):99-110.
  19. Zerhouni, E., Parish, D., Rogers, W., Yang, A., and Shapiro, E. (1988). Human heart : tagging with MR imaging - a method for noninvasive assessment of myocardial motion. Radiology, 169(1):59-63.
Download


Paper Citation


in Harvard Style

Histace A. and Ménard M. (2010). MRI IMAGE ENHANCEMENT - A PDE-based Approach Integrating a Double-well Potential Function for Thin Structure Preservation . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 501-508. DOI: 10.5220/0002887605010508


in Bibtex Style

@conference{ecsmio10,
author={A. Histace and M. Ménard},
title={MRI IMAGE ENHANCEMENT - A PDE-based Approach Integrating a Double-well Potential Function for Thin Structure Preservation},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010)},
year={2010},
pages={501-508},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002887605010508},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010)
TI - MRI IMAGE ENHANCEMENT - A PDE-based Approach Integrating a Double-well Potential Function for Thin Structure Preservation
SN - 978-989-674-028-3
AU - Histace A.
AU - Ménard M.
PY - 2010
SP - 501
EP - 508
DO - 10.5220/0002887605010508