A PRACTICAL METHOD FOR SELF-ADAPTING GAUSSIAN EXPECTATION MAXIMIZATION
Nicola Greggio, Alexandre Bernardino, José Santos-Victor
2010
Abstract
Split-and-merge techniques have been demonstrated to be effective in overtaking the convergence problems in classical EM. In this paper we follow a split-and-merge approach and we propose a new EM algorithm that makes use of a on-line variable number of mixture Gaussians components. We introduce a measure of the similarities to decide when to merge components. A set of adaptive thresholds keeps the number of mixture components close to optimal values. For sake of computational burden, our algorithm starts with a low initial number of Gaussians, adjusting it in runtime, if necessary. We show the effectivity of the method in a series of simulated experiments. Additionally, we illustrate the convergence rates of of the proposed algorithms with respect to the classical EM.
References
- Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood estimation from incomplete data via the em algorithm. J. Royal Statistic Soc., 30(B):1-38.
- Figueiredo, A. and Jain, A. (2002). Unsupervised learning of finite mixture models. IEEE Trans. Patt. Anal. Mach. Intell., 24(3).
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1):39-45.
- McLachlan, G. and Peel, D. (2000). Finite mixture models. John Wiley and Sons.
- Pernkopf, F. and Bouchaffra, D. (2005). Genetic-based em algorithm for learning gaussian mixture models. IEEE Trans. Patt. Anal. Mach. Intell., 27(8):1344-1348.
- Rissanen, J. (1989). Stochastic complexity in statistical jnquiry. Wold Scientific Publishing Co. USA.
- Sakimoto, Y., Iahiguro, M., and Kitagawa, G. (1986). Akaike information criterion statistics. KTK Scientific Publisher, Tokio.
- Sun, H., Sun, M., and Wang, S. (19-22 August 2007). A measurement of overlap rate between gaussian components. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong,.
- Ueda, N., Nakano, R., Ghahramani, Y., and Hiton, G. (2000). Smem algorithm for mixture models. Neural Comput, 12(10):2109-2128.
- Zhang, Z., Chen, C., Sun, J., and Chan, K. (2003). Em algorithms for gaussian mixtures with split-and-merge operation. Pattern Recognition, 36:1973 - 1983.
Paper Citation
in Harvard Style
Greggio N., Bernardino A. and Santos-Victor J. (2010). A PRACTICAL METHOD FOR SELF-ADAPTING GAUSSIAN EXPECTATION MAXIMIZATION . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-00-3, pages 36-44. DOI: 10.5220/0002894600360044
in Bibtex Style
@conference{icinco10,
author={Nicola Greggio and Alexandre Bernardino and José Santos-Victor},
title={A PRACTICAL METHOD FOR SELF-ADAPTING GAUSSIAN EXPECTATION MAXIMIZATION},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2010},
pages={36-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002894600360044},
isbn={978-989-8425-00-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A PRACTICAL METHOD FOR SELF-ADAPTING GAUSSIAN EXPECTATION MAXIMIZATION
SN - 978-989-8425-00-3
AU - Greggio N.
AU - Bernardino A.
AU - Santos-Victor J.
PY - 2010
SP - 36
EP - 44
DO - 10.5220/0002894600360044