MALE AND FEMALE CHROMOSOMES IN GENETIC ALGORITHMS
Ghodrat Moghadampour
2010
Abstract
Evolutionary algorithms work on randomly generated populations, which are converged over runs toward the desired optima. Randomly generated populations are of different qualities based on their average fitness values. In many cases switching all bits of a randomly generated binary individual to their opposite values might quickly produce a better individual. This technique increases diversity among individuals in the population and allows exploring the search space in a more rigorous way. In this research the effect of such operation during the initialization of the population and crossover operator has been investigated. Experimentation with 44 test problems in 2200 runs showed that this technique can facilitate producing better individuals on average in around 32% of cases.
References
- Bäck, Thomas, David B. Fogel, Darrell Whitely & Peter J. Angeline (2000). Mutation operators. In: Evolutionary Computation 1, Basic Algorithms and Operators. Eds T. Bäck, D. B. Fogel & Z. Michalewicz. United Kingdom: Institute of Physics Publishing Ltd, Bristol and Philadelphia. ISBN 0750306645.
- Cervantes, Jorge & Stephens, Christopher Rhodes (2008). Rank based variation operators for genetic algorithms. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation. ACM New York, NY, USA. ISBN: 978-1-60558-130- 9
- Deb, K. & D. E. Goldberg (1989). An investigation of niche and species formation in genetic function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms. Ed. J. D. Schaffer. Morgan Kaufmann.
- De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis, University of Michigan. Michigan: Ann Arbor.
- Eshelman, L. J. (1991). The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Foundations of Genetic Algorithms. Ed. G. Rawlins. Morgan Kaufmann.
- Eshelman, L. J. & J. D. Schaffer (1991). Preventing premature convergence in genetic algorithms by preventing incest. In: Proceedings of the Fourth International Conference on Genetic Algorithms. Eds R. K. Belew & L. B. Booker. San Mateo, CA: Morgan Kaufmann Publishers.
- Eshelman, L. J., R. A. Caruana & J. D. Schaffer (1989). Biases in the crossover landscape. In: Proceedings of the Third International Conference on Genetic Algorithms. Ed. J. D. Schaffer. Morgan Kaufmann.
- Fogel, L. J., A. J. Owens & M. J. Walsh (1966). Artificial Intelligence through Simulated Evolution. Chichester, UK: John Wiley.
- Goldberg, D. E. & R. E. Smith (1987). Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proceedings of The 2nd International Conference on Genetic Algorithms, 59- 68. Ed. J. J. Grefenstette. Lawrence Erlbaum Associates.
- Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: MI: University of Michigan Press.
- Gen, Mitsuo & RunWei Cheng (2000). Genetic Algorithms and Engineering Optimization. A WileyInterscience Publication. John Wiley & Sons, Inc. ISBN 0-471-31531-1.
- Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an optimization procedure. In: Artificial Life II. Eds C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen. Addison-Wesley.
- Krink, Thiemo (2005). Foundations of Evolutionary Computation, Lecture Notes. Available at: http:// www.daimi.au.dk/krink/fec05/index.html. Checked in June 2005.
- Lis, J. & M. Lis (1996). Self-adapting parallel genetic algorithm with the dynamic mutation probability, crossover rate and population size. In: Proceedings of the 1st Polish National Conference on Evolutionary Computation, 324-329. Ed. J. Arabas. Oficina Wydawnica Politechniki Warszawskiej.
- Mengshoel, Ole J. & Goldberg, David E. (2008). The crowding approach to niching in genetic algorithms. Evolutionary Computation, Volume 16, Issue 3 (Fall 2008). ISSN:1063-6560.
- Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition. USA: Springer. ISBN 3-540-60676-9.
- Michalewicz, Zbigniew (2000). Introduction to search operators. In: Evolutionary Computation 1, Basic Algorithms and Operators. Eds T. Bäck, D. B. Fogel & Z. Michalewicz. United Kingdom: Institute of Physics Publishing Ltd, Bristol and Philadelphia. ISBN 0750306645.
- Michalewicz, Zbigniew & David B. Fogel (2004). How to Solve It: Modern Heuristics. Second, Revised and Extended Edition. Germany: Springer-Verlag Berlin Heidelberg. ISBN 3-540-22494-7.
- Michalewicz, Zbigniew (1996). Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition. USA: Springer. ISBN 3-540-60676-9.
- Mitchell, Melanie (1998). An Introducton to Genetic Algorithms. United States of America: A Bradford Book. First MIT Press Paperback Edition.
- Moghadampour, Ghodrat (2006). Genetic Algorithms, Parameter Control and Function Optimization: A New Approach. PhD dissertation. ACTA WASAENSIA 160, Vaasa, Finland. ISBN 952-476-140-8.
- Smith, R. E., S. Forrest & A. S. Perelson (1993). Population diversity in an immune system model: implications for genetic search. In: Foundations of Genetic Algorithms 2. Ed. L.D. Whitely. Morgan Kaufmann.
- Spears, W. M. & K. A. De Jong (1991). On the virtues of parametrized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms. Eds R. K. Belew & L. B. Booker. Morgan Kaufmann.
- Spears, W. M. (1993). Crossover or mutation? In: Foundations of Genetic Algorithms 2. Ed. L. D. Whitely. Morgan Kaufmann.
- Talaslioglu, Tugrul (2009). A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search. Modelling and Simulation in Engineering archive. Volume 2009 (January 2009). ISSN: 1687-5591.
- Whitley, Darrell (2000). Permutations. In: Evolutionary Computation 1, Basic Algorithms and Operators. Eds T. Bäck, D. B. Fogel & Z. Michalewicz. United Kingdom: Institute of Physics Publishing Ltd, Bristol and Philadelphia. ISBN 0750306645.
Paper Citation
in Harvard Style
Moghadampour G. (2010). MALE AND FEMALE CHROMOSOMES IN GENETIC ALGORITHMS . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 220-225. DOI: 10.5220/0002897702200225
in Bibtex Style
@conference{iceis10,
author={Ghodrat Moghadampour},
title={MALE AND FEMALE CHROMOSOMES IN GENETIC ALGORITHMS},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={220-225},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002897702200225},
isbn={978-989-8425-05-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - MALE AND FEMALE CHROMOSOMES IN GENETIC ALGORITHMS
SN - 978-989-8425-05-8
AU - Moghadampour G.
PY - 2010
SP - 220
EP - 225
DO - 10.5220/0002897702200225