ENDOBRONCHIAL TUMOR MASS INDICATION IN VIDEOBRONCHOSCOPY - Block based Analysis
Artur Przelaskowski, Rafal Jozwiak, Tomasz Zielinski, Mariusz Duplaga
2010
Abstract
Computer-assisted interpretation of bronchial neoplastic lesion is an innovative but exceptionally challenging task due to highly diversified pathology appearance, video quality limitations and the role of subjective assessment of the endobronchial images. This work is focused on various manifestations of endobronchial tumors in acquired image sequences, bronchoscope navigation, artifacts, lightening and reflections, changing color dominants and unstable focus conditions. Proposed method of neoplasmatic areas indication was based on three steps of video analysis: a) informative frame selection, b) block-based unsupervised determining of enlarged textual activity, c) recognition of potentially tumor tissue, based on feature selection in different domains of transformed image and Support Vector Machine (SVM) classification. Prior to all of these procedures, wavelet-based image processing was applied to extract texture image for further analysis. Proposed method was verified with a reference image dataset containing diversified endobronchial tumor patterns. Obtained results reveal high accuracy for independent classification of individual (single video record) forms of endobronchial tumor patterns. The overall accuracy for whole dataset of 888 test blocks reached 100%. Less complex (approximately two times) procedure including initial blocks of interests selection reached accuracy of 96%.
References
- Duplaga, M., Leszczuk, M., Przelaskowski, A., Janowski, L. and Zieliski, T. (2007). Bronchovid - zintegrowany system wspomagajcy diagnostyk bronchoskopow. Przegld Lekarski 64:42-48.
- Bowling, M., Downie, G., Wahidi, M. and Conforti, J. (2007). Self-Assessment Of Bronchoscopic Skills In First Year Pulmonary Fellows. Chest Vol. 132, Issue 4.
- Hwang, S., Oh, J., Lee, J., Tavanapong, W., de Groen, P. C. and Wong, J. (2007). Informative Frame Classification for Endoscopy Video. Medical Image Analysis Vol. 11, No 2:100-127.
- Chung, A. J., Deligianni, F., Shah, P., Wells, A. and Yang, G. Z. (2006). Patient Specific Bronchoscopy Visualisation through BRDF Estimation and Disocclusion Correction. IEEE Transactions of Medical Imaging 25(4):503- 513.
- Duplaga, M. and Socha, M. (2005). Aplikacja oparta na bibliotece VTK wspomagajca zabiegi bronchoskopowe. Bio-Algorithms and Med-Systems I(l/2):191-196.
- Rai, L., Merritt, S. A. and Higgins, W. E. (2006). Realtime image-based guidance method for lung-cancer assessment. IEEE Conf. Computer Vision and Pattern Recognition 2:2437-2444.
- Mori, K., Deguchi, D., Sugiyama, J., Suenaga, Y., Toriwaki, J., Maurer, C. R. Jr, Takabatake, H. and Natori, H. (2005). Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images. Med. Image Anal. 6:321-365.
- Iakovidis, D. K., Maroulis, D. E. and Karkanis, S. A. (2006). An Intelligent System for Automatic Detection of Gastrointestinal Adenomas in Video Endoscopy Computers in Biology and Medicine. Vol. 36, 10:1084-1103.
- Przelaskowski, A., Bargiel, P., Sklinda K. and Zwierzynska E. (2007). Ischemic stroke modeling: multiscale extraction of hypodense signs Lecture Notes in Artificial Intelligence 4482:171-181, Springer Verlag.
- Tamura, H., Mori, S. and Yamawaki, T. (1978). Textural features corresponding to visual perception IEEE Trans. Systems, Man. and Cybern. Vol. 8, 6:460-472 .
- Do, M. N. and Vetterli, M. (2005). The contourlet transform: an efficient directional multiresolution image representation IEEE Trans Image Proces. Vol. 14, 12:2091-2106 .
- Donoho, D. L. and Huo, X. (2001). Beamlets and Multiscale Image Analysis Computational Science and Engineering, Multiscale and Multiresolution Methods, Springer.
- Buckheit, J. B. and Donoho, D. L. (2005). WaveLab and Reproducible Research Dept. of Statistics, Stanford University, Tech. Rep. 474.
Paper Citation
in Harvard Style
Przelaskowski A., Jozwiak R., Zielinski T. and Duplaga M. (2010). ENDOBRONCHIAL TUMOR MASS INDICATION IN VIDEOBRONCHOSCOPY - Block based Analysis . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 536-542. DOI: 10.5220/0002924405360542
in Bibtex Style
@conference{ecsmio10,
author={Artur Przelaskowski and Rafal Jozwiak and Tomasz Zielinski and Mariusz Duplaga},
title={ENDOBRONCHIAL TUMOR MASS INDICATION IN VIDEOBRONCHOSCOPY - Block based Analysis},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010)},
year={2010},
pages={536-542},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002924405360542},
isbn={978-989-674-028-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: ECSMIO, (VISIGRAPP 2010)
TI - ENDOBRONCHIAL TUMOR MASS INDICATION IN VIDEOBRONCHOSCOPY - Block based Analysis
SN - 978-989-674-028-3
AU - Przelaskowski A.
AU - Jozwiak R.
AU - Zielinski T.
AU - Duplaga M.
PY - 2010
SP - 536
EP - 542
DO - 10.5220/0002924405360542