A FRAMEWORK FOR INFORMATION DIFFUSION OVER SOCIAL NETWORKS RESEARCH - Outlining Options and Challenges

Juan Yao, Markus Helfert

2010

Abstract

Information diffusion is a phenomenon in which new ideas or behaviours spread contagiously through social networks in the style of an epidemic. Recently, researchers have contributed a plethora of studies, approaches and theoretical contributions related to various aspects of the diffusion phenomenon. There are many options and approaches. However there are only rare research articles consolidating and reviewing the various options. In this paper, we aim to contribute an overview of the most prominent approaches related to the studies of the diffusion phenomenon. We present a framework and research overview for this area. Our framework can assist researchers and practitioners to identify suitable solutions and understand the challenges in the information diffusion over social networks research.

References

  1. Anagnostopoulos, A., Kumar, R., and Mahdian, M., 2008. Influence and correlation in social networks. In KDD 7808, pages 7-15, New York, NY, USA. ACM.
  2. Burt, R. S., 2005. Brokerage and Closure: An Introduction to Social Capital. Oxford University Press, USA.
  3. Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X., 2006. Group formation in large social networks: membership, growth, and evolution. In KDD 7806, pages 44-54, New York, NY, USA. ACM.
  4. Cointet, J. P. and Roth, C., 2007. How realistic should knowledge diffusion models be? Journal of Artificial Societies and Social Simulation, 10(3).
  5. Christakis, N. A. and Fowler, J. H., 2007. The spread of obesity in a large social network over 32 years. N Engl J Med, 357(4):370-379.
  6. Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., and Suri, S., 2008. Feedback effects between similarity and social influence in online communities. In KDD 7808, pages 160-168, New York, NY, USA. ACM.
  7. Granovetter, M. S., 1973. The strength of weak ties. The American Journal of Sociology, 78(6):1360-1380.
  8. Granovetter, M., 1978. Threshold models of collective behavior. The American Journal of Sociology, 83(6):1420-1443.
  9. Goldenberg, J., Libai, B., and Mullen, E., 2001. Talk of the network: a complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211-223.
  10. Hartline, J., Mirrokni, V., and Sundararajan, M., 2008. Optimal marketing strategies over social networks. In WWW 7808, pages 189-198, New York, NY, USA. ACM Press.
  11. Immorlica, N., Kleinberg, J., Mahdian, M., and Wexler, T., 2007. The role of compatibility in the diffusion of tecfhnologies through social networks. In Proc. 8th EC, pages 75-83.
  12. Kempe, D., Kleinberg, J., and Tardos, Ã., 2003. Maximizing the spread of influence through a social network. In KDD 7803, New York, NY, USA. ACM.
  13. Kleinberg, J., 2007. Cascading Behavior in Networks: Algorithmic and Economic Issues. Cambridge University Press.
  14. Katona, Z., Zubcsek, P. P., and Sarvary, M., 2009. Network effects and personal influence: Diffusion of an online social network. Working paper.
  15. Leskovec, J., Adamic, L. A., and Huberman, B. A., 2006. The dynamics of viral marketing. In EC 7806: Proceedings of the 7th ACM conference on Electronic commerce, pages 228-237, New York, NY, USA. ACM.
  16. Leskovec, J., Singh, A., and Kleinberg, J., 2006. Patterns of influence in a recommendation network. pages 380- 389.
  17. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., and Hurst, M., 2007. Cascading behavior in large blog graphs.
  18. Liben-Nowell, D. and Kleinberg, J., 2008. Tracing information flow on a global scale using internet chain-letter data. Proceedings of the National Academy of Sciences, 105(12):4633-4638.
  19. Morris, S., 2000. Contagion. Review of Economic Studies, 67:57-68.
  20. Mcpherson, M., Lovin, L. S., and Cook, J. M., 2001. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1):415-444.
  21. Onnela, J. P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L., 2007. Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18):7332-7336.
  22. Van den Bulte, C., Stremersch, S., 2004. Social Contagion and income heterogeneity in new product diffusion: A meta-analytic test. Marketing Science, 23(4):530-544.
Download


Paper Citation


in Harvard Style

Yao J. and Helfert M. (2010). A FRAMEWORK FOR INFORMATION DIFFUSION OVER SOCIAL NETWORKS RESEARCH - Outlining Options and Challenges . In Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT, ISBN 978-989-8425-23-2, pages 491-494. DOI: 10.5220/0002926204910494


in Bibtex Style

@conference{icsoft10,
author={Juan Yao and Markus Helfert},
title={A FRAMEWORK FOR INFORMATION DIFFUSION OVER SOCIAL NETWORKS RESEARCH - Outlining Options and Challenges},
booktitle={Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,},
year={2010},
pages={491-494},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002926204910494},
isbn={978-989-8425-23-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Software and Data Technologies - Volume 2: ICSOFT,
TI - A FRAMEWORK FOR INFORMATION DIFFUSION OVER SOCIAL NETWORKS RESEARCH - Outlining Options and Challenges
SN - 978-989-8425-23-2
AU - Yao J.
AU - Helfert M.
PY - 2010
SP - 491
EP - 494
DO - 10.5220/0002926204910494