and required computation time – number of
iterations. In many cases the number of iterations
can be cut down. The optimal decomposition, for
which the algorithm is convergent with minimal
number of iterations depends on the initial condition
– for receding horizon problems the initial condition
is the current state in each time sample. The
selection of the decomposition parameters
,
β
should be always connected with current value of
the state to ensure suitable value of conditional
number corresponding to the inverse of matrix in
formula (24).
ACKNOWLEDGEMENTS
This work was supported by the Ministry of Science
and Higher Education in Poland under the grant
N N514 298535.
REFERENCES
Błachuta, M. J. 1999. On Fast State-Space Algorithms for
Predictive Control. Int. J. Appl. Math. Comput. Sci.,
Vol. 9, No. 1, 149-160.
Camacho EF., Bordons C. 2004. Model Predictive
Control. Springer.
Chen H., Allgower F. 1998. A quasi-infinite horizon
nonlinear model predictive control scheme with
guaranteed stability. Automatica, 34(10):1205–1218.
De Nicolao G., Magni L., Scattolini R.. 2000. Stability and
robustness of nonlinear receding horizon control. In F.
Allgower and A. Zheng, editors, Nonlinear Predictive
Control, pp. 3–23. Birkhauser.
Dutka A. S., Ordys A. W., Grimble M. J. 2003. Nonlinear
Predictive Control of 2 dof helicopter model, IEEE
CDC proceedings.
Dutka, A., Ordys A. 2004. The Optimal Non-linear
Generalised Predictive Control by the Time-Varying
Approximation, Proc. of 10
th
IEEE Int. Conf. MMAR.
Miedzyzdroje. Poland. pp. 299-304.
Fontes F. A. 2000. A general framework to design
stabilizing nonlinear model predictive controllers.
Syst. Contr. Lett., 42(2):127–143.
Grimble M. J., Ordys A. W. 2001. Non-linear Predictive
Control for Manufacturing and Robotic Applications,
Proc. of 7
th
IEEE Int. Conf. MMAR. Miedzyzdroje.
Huang Y., Lu W.M. 1996. Nonlinear Optimal Control:
Alternatives to Hamilton-Jacobi Equation”, Proc. of
the 35th IEEE Conference on Decision and Control,
pp. 3942-3947.
Kouvaritakis B., Cannon M., Rossiter J. A. 1999. Non-
linear model based predictive control, Int. J. Control,
Vol. 72, No. 10, pp. 919-928.
Kowalczuk Z, Suchomski P. 2005. Discrete-Time
Predictive Control With Overparameterized Delay-
Plant Models And An Identified Cancellation Order.
Int. J. Appl. Math. Comput. Sci, Vol. 15, No. 1, 5–34.
Lee Y. I., Kouvaritakis B., Cannon M. 2002. Constrained
receding horizon predictive control for nonlinear
systems, Automatica, Vol. 38, No. 12, pp. 2093-2102.
Magni, L., De Nicolao, G., Scattolini, R. 1999. Some
Issues in the Design of Predictive Controllers. Int. J.
Appl. Math. Comput. Sci., Vol. 9, No. 1, 9-24.
Mayne D.Q., Rawlings J.B., Rao C.V., Scokaert P.O.M.
2000. Constrained model predictive control: stability
and optimality. Automatica, 26(6):789–814.
Morari M. and Lee J. 1999. Model predictive control:
Past, present and future. Comput. Chem. Engi., Vol.
23, No. 4/5, pp. 667–682.
Morari M., de Oliveira Kothare S. 2000. Contractive
model predictive control for constrained nonlinear
systems. IEEE Trans. Aut. Contr., 45(6):1053–1071.
Mracek C. P., Cloutier J. R. 1998. Control Designs for the
nonlinear benchmark problem via the State-Dependent
Riccati Equation method, International Journal of
Robust and Nonlinear Control, 8, pp. 401-433.
Ordys A. W., Grimble M. J. 2001. Predictive control
design for systems with the state dependent non-
linearities, SIAM Conference on Control and its
Applications, San Diego, California.
Orlowski, P. 2005. Convergence of the optimal non-linear
GPC method with iterative state-dependent, linear
time-varying approximation, Proc. of Int. Workshop
on Assessment and Future Directions of NMPC,
Freudenstadt-Lauterbad, Germany, pp. 491-497.
Primbs J., Nevistic V., Doyle J. 1999. Nonlinear optimal
control: A control Lyapunov function and receding
horizon perspective. Asian Journal of Control,
1(1):14–24.
Qin S. J. and Badgwell T. 2003. A survey of industrial
model predictive control technology. Contr. Eng.
Pract., Vol. 11, No. 7, pp. 733–764.
Scokaert P.O.M., Mayne D.Q., Rawlings J.B. 1999.
Suboptimal model predictive control (feasibility
implies stability). IEEE Trans. Automat. Contr.,
44(3):648–654.
Tatjewski P. 2007. Advanced Control of Industrial
Processes, Structures and Algorithms. London:
Springer.
Ulbig A., Olaru S., Dumur D., Boucher P. 2007. Explicit
solutions for nonlinear model predictive control : a
linear mapping approach, European Control
Conference ECC 2007, Kos, Grece.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
92