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Abstract: Research presented in this paper details the development of an integrated system, which allowed 
presentation of meaningful data to coaches and their swimmers in a training environment. The integrated 
system comprised of a wireless sensor node, vision components, a wireless audio communication module 
and force measurement technologies. A trigger function was implemented onto the sensor node which 
synchronized all of the components and that allowed relative processing of the data. Filtering approaches 
and signal processing algorithms were used to allow real-time data analysis on the sensor node. 

1 INTRODUCTION 

The majority of methods used to analyse swimming 
technique are vision-based systems. Quintic is an 
example of vision-based software where the analyst 
uses a pre-recorded video file and then manually 
digitises key occurrences within the recording 
(Quintic). The disadvantage of this and other vision 
systems are the parallax errors introduced by the use 
of video cameras, inaccurate measurements due to 
light reflections on the water surface and the large 
amount of time it takes to process the data. Manual 
digitisation is a time consuming process and does 
not allow real-time feedback to the coaches or 
swimmers. The process provides limited quantitative 
data and requires operator expertise. There is 
inherent variability within the results due to the 
reliance of human judgement.  

Force measurement platforms are an additional 
technology used for measuring swimmer 
performance. Force data can be integrated with 
video data during the block phase (time from the 
start trigger to leaving the block) of the dive to 
enable more complete analysis.  

Accelerometer sensor devices have also been 
developed for use in a swimming environment. An 
example of this was presented by Davey (2005), 

where a system was developed using a tri-axis 
accelerometer to monitor stroke technique. Ohgi 
used a similar system to measure wrist acceleration 
of swimmers (Ohgi, 2002). Both systems used a data 
logging accelerometer system to capture the data, 
which meant that the data could not be viewed in 
real time. These existing systems focus on post 
processing that again increases the analysis time 
significantly and subsequently coaches are unable to 
offer immediate feedback to the swimmers based on 
these data. Neither case used a wireless sensor 
network (WSN) to allow data to be captured from 
multiple swimmers, nor an integrated system to 
allow full analysis of the stroke technique. 

Research presented within this paper, carried out 
at Loughborough University, UK, was concerned 
with the development of a component based 
integrated system for monitoring elite athletes in the 
water. The main results of the initial feasibility study 
are presented in this paper. This study considered a 
variety of different sensing and measurement 
devices and an integrated system was constructed to 
capture the data. The integrated system comprised of 
a WSN, real time audio communications to the 
swimmer, a vision analysis system using real-time 
image processing, an underwater camera and a force 
measurement platform. The WSN was chosen due to 
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Figure 1: Integrated system. 

its ability to transmit and feedback data in real-time. 
It also allowed multiple swimmers performances to 
be analysed simultaneously. Furthermore it was 
possible to synchronize the network with other data 
capture methods used within the integrated system. 
The high-speed and underwater cameras were used 
because of their ability to provide the coach with 
visual information with regards to the athletes’ 
performance. This made analysing the data from the 
accelerometer and the force platform much simpler. 
The audio communications were chosen because 
they allowed the coach to feedback information to 
the swimmer in real-time, based on the data 
gathered. 

The WSN was designed with a star topology, a 
number of nodes communicated with a poolside 
personal computer (PC) via an “Access Point” that 
collated the wireless data transmissions from the 
wireless nodes and had a hardwired connection to 
the PC. A trigger function was implemented onto the 
sensor node to allow synchronised processing of 
data obtained from all components. A Butterworth 
filter and signal processing algorithms to extract the 
relevant swimming features were embedded onto the 
node which allowed the coach to extract useful data 
with regards to each individual swimmer’s 
performance in real time.  

2 METHODOLOGY 

The force measurement system was used to augment 
the information available from a high speed camera 

and the WSN during the start process. The force 
measurement system was comprised of a start 
platform instrumented with four Kistler force 
transducers (9317B) sampling at 100Hz. The force 
measurement platform was used to ascertain the 
following parameters: 

 Horizontal force 
 Vertical force 
 Time: to first movement, to back foot leaving, 

to front foot leaving, overall block time 
 Centre of pressure 
A high-speed camera and a WSN were 

synchronised with the force measurement platform 
using a TTL trigger function. The function was 
implemented in the embedded programming of the 
node which sent an interrupt to the access point (AP) 
when the trigger was enabled. Sending a TTL signal 
to a port on the AP triggered the system. The 
embedded code initialised the trigger, starting the 
trigger on the rising edge of the signal. The 
integrated system can be seen in Figure 1 and has 
been used to determine the characteristics of an  
accelerometer trace based on the data gathered from 
the high speed video camera and force plateThe 
camera used was a Photron SA1 colour camera with 
a 1024x1024 resolution, sampling at 50 frames per 
second (fps). Automated vision processing was used 
to track wearable LED markers placed on body key 
body landmarks, for example, the hip. This was done 
via spatial thresholding algorithms, developed in 
Matlab. An underwater bullet CCTV camera 
sampling at 25 fps was also used. Vision data was 
used to supplement the data gathered from the WSN, 
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allowing stroke recognition and real-time analysis of 
the accelerometer signal. 

For many low-g (<2g) inertial sensing 
applications the signal-to-noise ratio is low and thus 
any un-modelled error in the physical parameters 
undermine the effectiveness of the intended 
application over time (Ang, 2004). A common 
method to minimize the errors associated with the 
accelerometer signal is the use of filtering (see for 
example Koukoulas 2005, Jo 2004, Hernandez 
2000). For the current system a low-pass finite 
impulse response (FIR) filter was implemented to 
filter out frequencies greater than a pre-defined 
threshold while retaining the low frequency 
components (Ketharnavaz, 2005). Filtering also 
reduces the errors associated with integration of a 
signal, in this case integration of the accelerometer 
data in order to obtain velocity and double 
integration to obtain position. Edwards (2005) 
demonstrated that seemingly small aliased content 
could cause appreciable errors in the integrated 
waveforms. 

The raw accelerometer values were fed into a 
real-time Butterworth filter and signal processing 
equations, which were embedded onto the node. 
This enabled analysis to take place robustly, in real-
time, so that the results could be sent directly from 
the node rather than sending raw data. This was 
preferable because the raw data file was large and 
therefore filled the available bandwidth. A low pass 
Butterworth filter was chosen to smooth the data 
collected and to minimize the noise components of 
the signal. It was chosen over a Chebyshev filter due 
to its ability to be implemented in real time and 
embedded on the sensor node. Lap count 
identification was automatically determined by 
setting a low filter frequency on the Butterworth 
filter and using a ‘zero crossing’ algorithm. Signal 
processing algorithms were developed to analyse 
filtered data, including a ‘zero crossing’ algorithm to 
determine the stroke durations and stroke rates, 
which were identified to be the variables of most 
interest to the end users. Pulse analysis of the 
filtered data was also calculated and used to 
determine the rise and fall times of each stroke. 
Circular buffers were used to allow real-time 
implementation of the filter and signal processing 
algorithms.  

A wireless audio communication module was 
attached to the swimmer and a UART interface to 
the host device was used to configure the module 
operation and then transfer data between the host 
and the communication end-point via the wireless 
interface. Once the devices were connected the 

coach used the microphone input to provide 
feedback to the swimmer (who wore earphones 
attached to the wireless module) on their 
performance throughout their training. The module 
transmitted wirelessly up to a depth of 10cm over a 
distance of more than 50m underwater. 

3 RESULTS 

Initially the results are used to highlight the 
implementation of the synchronised system and data 
capture. The filtering technique used on the 
synchronised data is then considered. Finally 
determination and analysis of the stroke 
characteristics from the filtered data are reviewed. 

The TTL trigger function embedded on the 
sensor node was used to capture data simultaneously 
from the force measurement platform, the high 
speed video camera and the sensor node. These data 
can be seen in Figure 2. The high speed video was 
used to supplement the data gathered from the force 
platform and allowed determination of the key 
points that occurred during the dive, for example, 
time of back foot leaving the force platform. The 
times on the video were correlated with those of the 
accelerometer data, identifying time to entry, the 
point where the stroke was initiated and the time at 
15m (where the start officially ends). In addition, the 
WSN was used to consider elements such as lap 
count, stroke rate, stroke duration in free swimming 
and to distinguish the different phases of the turn. 

Initially a Butterworth filter was used to 
ascertain the lap count of the swimmer. Setting a 
low filter frequency achieved this. A comparison of 
the raw unfiltered data and the real-time embedded 
filtered data on 4 lengths of front crawl stroke can be 
seen in Figure 3. The largest peak in the data was 
identified as the swimmer’s turn at the wall at the 
halfway point. By setting a threshold the filter and 
signal processing algorithms were used to pick out 
the lap count. For these data the four laps were 
identified. 

Different filter frequencies were required for the 
different swimming strokes. In order to retain the 
peaks in the breaststroke and butterfly data a higher 
cut off frequency was used. The signal processing 
technique used for one length of front crawl can be 
seen in Figure 4. It was found that pre processed 
data could be analysed to establish timing 
information, stroke count, stroke durations, rise 
times and fall times. This analysis may then be 
collated to give an indication of the swimmers 
performance. Four 100m trials have been analysed  
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Figure 2: Integrated system for starts. 

 
Figure 3: Butterworth filter on 4 lengths of front crawl data. 
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Figure 4: Analysis of the front crawl stroke using video and accelerometer data. 

to derive all of the discussed parameters, Figure 5. 
Automated timing was found to be within 1 second 
of hand timing on average. Hand timing is 
undesirable since it is subject to human judgement 
and variability and cannot be readily scaled to 
support the monitoring of multiple swimmers in 
training sessions. Average stroke durations gave an 
idea of a swimmer’s typical stroke and provided a 
measure to determine if they had changed their 
technique. 

The underwater video camera was used to 
chracterise phases of the turn with the accelerometer 
data. The x axes represented the forward motion, the 
y axis the roll of the swimmer laterally and the z axis 
the vertical movement of the swimmer. On the 
swimmer’s approach to the wall the acceleration in 
the z axis remained fairly constant. When the 
swimmer initiated the turn the z axis rotated through 
90 degrees, which meant that the x axis experienced 
the major gravity component and the z axis tended 
towards zero. When the swimmer turned onto their 
back the z component experienced a negative 
contribution from gravity. As the swimmer turned 
back onto their front the z acceleration returned to 

fluctuating about 1g. This process can be seen from 
the video and accelerometer data in Figure 6. 

A comparison of manual and automatic tracking 
was carried out to determine the efficiency of the 
automated code. The time it took to analyse one 
100m IM manually, i.e. to determine lap count, 
stroke rate, stroke duration and rise and fall times, 
was approximately 45 minutes. An elite swimmer 
swims around 4-6km in a two hour session. If each 
length was analysed for the parameters discussed it 
would take up to 45hours to analyse one swimmer’s 
two hour training session! The embedded coding 
enabled these same values to be obtained in real-
time throughout the swimmer’s training session. 
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Figure 5: Summary of free swimming signal processing using video and accelerometer data. 

 
Figure 6: Integrated system for turns. 
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4 CONCLUSIONS 

A multimedia system and signal processing 
techniques for monitoring swimmer performance has 
been presented in this paper. It provides a significant 
advantage over current methods used because it 
allows results from multiple components to be 
integrated and analysed simultaneously in real-time. 
The signal processing techniques used on the 
accelerometer offer feedback to swimmers in real-
time and parameters are derived automatically on the 
sensor node. 

5 FUTURE WORK 

An inertial navigation system (INS) will be used in 
which measurements from embedded accelerometers 
and gyroscopes will be used to track the position and 
orientation of a swimmer relative to a known 
starting point, orientation and velocity. An INS 
comprising of a tri-axis accelerometer and a tri-axis 
gyroscope, measuring angular velocity and linear 
acceleration respectively, will be attached as a 
strapdown system to a swimmer. By processing 
signals from these devices it is possible to track the 
position and orientation of a device (Woodman, 
2007). The  output of the gyroscope provides the 
attitude of the swimmer. Strapdown navigation 
equations will be used to combine the accelerometer 
and gyroscope data, compensating for the effect of 
gravity on the system. The output will then be 
integrated twice (once in order to obtain velocity, 
and again in order to obtain position). 

The results from the IMU will then be fed into an 
extended Kalman filter. The Kalman filter combines 
noisy sensor outputs to estimate the state of a system 
with uncertain dynamics (Grewal, 2007). The noisy 
sensors in this research will be INS accelerometers 
and gyroscopes. The system state includes position, 
velocity and attitude rate of the swimmer. It also 
includes the accelerometer and gyroscope biases and 
scale factors. The uncertain dynamics includes 
unpredictable disturbances of the swimmer, for 
example, waves in the water. A GPS receiver may 
be used to calibrate the system initially (before the 
swimmer enters the building), increasing the 
accuracy of the initial error predictions. 

The integrated system will be presented in a 
graphical user interface (GUI) thus allowing the 
coaches and swimmers to visualise the results with 
ease, allowing unique insight into the skill and 
performance capabilities of elite swimmers. 
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