
 
Table 5: Closed loop performances Values Obtained for 
the First SISO System. 
 
Overshoot 
(
%
) 
Settling 
time (
T )
 
Variance of 
the control 
(
v
V
) 
k∈ [0;400] 
12 64s 
0.69 
k∈[401;800] 
24 66s 
Table 6: Closed loop Performances values for the Second 
SISO System. 
 Overshoot 
(
%
) 
Settling 
time (
T )
 
Variance of 
the control 
(
v
V ) 
k∈ [0;300] 
05.8 71s 
10.06 
k∈[301;800] 
12.8 77s 
5 CONCLUSIONS 
In this paper, a new method allowing the on line 
adjustment of the predictive controller synthesis 
parameters for multivariable systems has been 
presented. The decentralized control using the 
decoupling network is applied to decouple the 
different subsystems and to control the MIMO 
system using multiple SISO controllers. Genetic 
algorithms and the weighted sum method are 
exploited to find the synthesis parameters by 
minimizing simultaneously three criteria which are 
the overshoot, the settling time and the variance of 
the control. The obtained simulation results have 
shown that the proposed method can lead to 
acceptable closed loop performances. 
REFERENCES 
Albertos, P., Sala, A., 2004. Multivariable control 
systems: an engineering approach, Springer. 
Bemporada, A., Muñoz de la Peñab, D., 2009. 
Multiobjective   model predictive control, Automatica, 
vol. 45, issue 12, p. 2823-2830. 
Ben Abdennour, R., Ksouri, M., Favier, G., 1998. 
Application of fuzzy logic to the on-line adjustement of 
the parameters of a generalized predictive controller. 
Intelligent Automation and soft computing, vol.4, No 
3, p.197-214. 
Bouani, F., Laabidi, K., Ksouri, M., 2006. Constrained 
Nonlinear Multi-objective Predictive Control, IMACS 
Multiconference on "Computational Engineering in 
Systems Applications"(CESA), Beijing, China, p. 
1558-1565. 
Bristol, E.H., 1966. On a new measure of interaction for 
multivariable process control. IEEE Transactions on 
control, p133-134.  
Clarke, W., Mohtadi, C., Tuffs, P. S., 1987. Generalised 
Predictive Control- parts I & II. Automatica, vol.23, 
N° 2, p. 137-160. 
Collette, Y., Siarry, P., 2002. Optimisation multiobjectif, 
Editions Eyrolles. 
Gambier, A., 2008. MPC and PID Control Based on 
Multi-Objective Optimization. American Control 
Conference, Washington, USA, p. 4727-4732. 
Goldberg, D. E., 1991. Genetic Algorithms in search, 
optimization and machine learning, Addison-Wesley, 
Massachusetts. 
Khelassi, A., Wilson, J.A., Bendib,R., 2004. Assessment of 
Interaction in Process, Control Systems Dynamical 
Systems and Applications   Proceedings, Antalya, 
Turkey, p. 463-471. 
Miskovic, L., Karimi, A., Bonvin, D., Gevers, M., 2007.
 
Correlation-based tuning of decoupling multivariable 
controllers, Automatica,
 vol. 43, p. 1481-1494. 
Moaveni, C., Khaki-Sedigh, A., 2006. Input-Output 
Pairing based on Cross-Gramian Matrix, SICE-
ICASE International joint conference, Korea, p. 2378-
2380. 
Muldera, E. F., Tiwari, P. Y., Kothare, M.  V., 2009. 
Simultaneous linear and anti-windup controller 
synthesis using multiobjective convex optimization, 
Automatica, vol.45, issue 3, p.805-811. 
Popov, A., Farag, A., Werner, H., 2005. Tuning of  a PID 
controller Using a Multi-objective Optimization 
Technique Applied to a Neutralization Plant, 44th 
IEEE Conference on Decision and Control, and the 
European Control Conference, Seville, Spain, p. 7139-
7143. 
Richalet, J., Lavielle, G., Mallet, J., 2005. La commande 
prédictive : mise en œuvre et applications 
industrielles, Editions Eyrolles. 
Yang, Z., Pedersen, G., 2006.  Automatic Tuning of PID 
Controller for a 1-D Levitation System Using a 
Genetic Algorithm - A Real Case Study, IEEE 
International Symposium on Intelligent Control, 
Munich, Germany, p. 3098-3103. 
Zalkind, C.S., 1967. Practical approach to non-
interacting control parts I and II. Instruments and 
control systems, vol.40, No.3 and No.4. 
 
 
DESIGN OF A MULTIOBJECTIVE PREDICTIVE CONTROLLER FOR MULTIVARIABLE SYSTEMS
115