![](bg6.png)
6 CONCLUSIONS AND FUTURE
WORK
In this paper several approaches for optimization of
the transportation processes inside a transfer stations
have been showed. The proposed architecture for in-
telligent material flow systems includes Multi-Agent-
Systems and wireless sensor networks that are coop-
erating in a pro-active or re-active manner. Further
research has to be done to decide the best cooperating
manner. The main problems for a wireless sensor net-
work in a intelligent material flow system have been
figured out and it was discussed that with an appro-
priate storage strategy the limited storage space and
energy resources are sufficient for an intelligent ma-
terial flow systems. Furthermore, a novel framework
was proposed that eases the integration process be-
tween the control level and the physical level of het-
erogeneous conveyors. In the future the architecture
and the framework have to be tested for real logistic
setups and the lessons learned will be demonstrated
in successive publications.
ACKNOWLEDGEMENTS
This contribution was supported by the German fed-
eral state of Lower Saxony with funds of the Euro-
pean Regional Development Fund (ERDF) within the
scope of the research project ”Cognitive Logistic Net-
works” (CogniLog).
REFERENCES
Beth, C., Kamenik, J., Ommen, D., and Hahn, A. (2009).
Design aspects of cognitive logistic systems. In Int.
Conf. on Dynamics and Logistics (LDIC), Bremen.
Diao, Y., Ganesan, D., Mathur, G., and Shenoy, P. J. (2007).
Rethinking data management for storage-centric sen-
sor networks. In CIDR, pages 22–31.
Leit ao, P. (2009). Agent-based distributed manufacturing
control: A state-of-the-art survey. Eng. Appl. Artif.
Intell., 22(7):979–991.
Nanotron Technologies, G. (2007). Real time location sys-
tems, version 1.02, document-id: Na-06-0148-0391-
1.02.
Ommen, D., Beth, C., Kamenik, J., and Hahn, A. (2009). A
system-architecture for robotic movements of goods -
approaches towards a cognitive material flow system.
In Filipe, J., Andrade-Cetto, J., and Ferrier, J.-L., edi-
tors, ICINCO-RA, pages 342–347. INSTICC Press.
Pottie, G. J. and Kaiser, W. J. (2000). Wireless integrated
network sensors. Commun. ACM, 43(5):51–58.
Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govin-
dan, R., and Shenker, S. (2002). Ght: A geographic
hash table for data-centric storage in sensornets. In
citeseer.ist.psu.edu/ratnasamy02ght.html, editor, Pro-
ceedings of the First ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA).
ACM.
R
¨
ohrig, C. (2009). Lokalisierungsverfahren f
¨
ur drahtlose
Sensornetzwerke. In Sieck, J. and Herzog M.H.,
editors, Wireless Communication and Information
– Radio Engineering and Multimedia Applications,
pages 81–97. Verlag Werner Hlsbusch, Boizenburg,
Deutschland.
Schmidt, T. and Schulze, F. (2009). Future approaches to
meet complexity requirements in material handling
systems. In FME Transactions, volume 37, pages
159–166.
Scholz-Reiter, B., Jagalski, T., and Bendul, J. (2007a). Selb-
ststeuerung logistischer prozesse in produktionsnet-
zen. Industrie Management, 23:7–10.
Scholz-Reiter, B., Jagalski, T., and de Beer, C. (2007b).
Selbststeuerung logistischer prozesse in produktion-
snetzen. Industrie Management, pages 19–22.
Scholz-Reiter, B., Rekersbrink, H., and Freitag, M. (2006).
Kooperierende routingprotokolle zur selbststeuerung
von transportprozessen. Industrie Management,
22:19–22.
Ten Hompel, M., Follert, G., and Roidl, M. (2008). Kuen-
stliche intelligenz im internet der dinge: Die zukunft
der materialflusssteuerung mit autonomen agenten.
Tilak, S., Abu-Ghazaleh, N. B., and Heinzelman, W. (2006).
Storage Management in Wireless Sensor Networks,
pages 257–281. John Wiley & Sons, Inc.
Windth, K. (2007). Selbststeuerung intelligenter objekte in
der logistik. Selbstorganisation - Ein Denksystem fr
Natur und Gesellschaft, pages 19–22.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
254