tive Sliding Mode Control of Autonomous Undewater
Vehicle in the Dive Plane. IEEE Journal of Oceanic
Engineering, 15(3).
Debitetto, A. (1995). Fuzzy logic for depth control of un-
manned undersea vehicles. IEEE journal of Oceanic
Engineering, 20(3).
E. An, R. Dhanak, L. S. S. S. J. L. (2001). Coastal oceanog-
raphy using a small auv. Journal of Atmospheric and
Ocean Technology, (18):215–234.
Feldman, J. (1979). Revised standard submarine equations
of motion report dtnsrdc/spd-0393-09. Technical re-
port, David W. Taylor Naval Ship Research and De-
velopment Center, Bethesda, MD.
Field, A. I. (2000). Optimal control of an autonomous un-
derwater vehicle. In World Automatic Congress, Maui,
Hawaii.
Fodrea, L. R. (2002). Obstactle Avoidance Control for the
REMUS Autonomous Underwater Vehicle. PhD the-
sis, Naval Postgraduate School, Monterey, California.
Foresti, G. (2001). Visual inspection of sea bottom struc-
tures by an autonomous underwater vehicle. IEEE
Transactions on Systems, Man and Cybernetics - Part
B: cybernetics, 31(5).
Fossen, T. (1994a). Guidance and control of ocean vehicles.
John Wiley & Sons Ltd.
Fossen, T. I. (1994b). Guidance and Control of an Au-
tonomous Underwater Vehicle. John Wiley and Sons.
Gertler, M. and Hagen, G. (1967). Standard equations of
motion for submarine simulation report dtnsrdc 2510.
Technical report, David W. Taylor Naval Ship Re-
search and Development Center, Bethesda.
Grieder, P., Borelli, F., Torrisi, F., and Morari, M. (2004).
Computation of the Constrained Infinite Time Linear
Quadratic Regulator. Automatica, 40(4):701–708.
Healey, A. and Lienard, D. (1993). Multivariable sliding
mode control for autonomous diving and steering of
unmanned underwater vehicles. In IEEE Journal of
Oceanic Engineering, volume 18.
Humphreys, D. (1976). Development of the equations of
motion and transfer functions for underwater vehicles.
Technical report, Naval Coastal Systems Laboratory,
Panama City, FL.
Kawano, H. and Ura, T. (2002). Fast reinforcement learn-
ing algorithm for motion planning of non-holonomic
unmanned underwater vehicles. In Int. Conference on
Intelligent Robots and Systems IEEE/RSJ, Lausanne,
Switzerland.
Kvasnica, M., Grieder, P., Baotic, M., and Morari, M.
(2004). Multi–Parametric Toolbox (MPT). Hybrid
Systems: Computation and Control, (2993):448–462.
Pestero, T. (2001). Verification of six–degree of freedom
simulation model for the remus auv. Master’s thesis,
Massachusetts Institute of Technology.
Prestero, T. (2000). Development of a six–degree of free-
dom simulation model for the remus autonomous un-
derwater vahicle. In In Proceedings of MTS-IEEE
Oceans 2000,Providence, Rhode Island.
Prestero, T. (2001). Verification of a six-degree of freedom
simulation model for the remus autonomous underwa-
ter vehicle. Master’s thesis, Massachusetts Institute of
Technology and Woods Hole Oceanographic Institu-
tion, Cambridge, Massachusetts.
Rodrigues, L., Tavares, P., and Prado, M. (1996). Slid-
ing mode control of an auv in the diving and steering
planes. In OCEANS MTS/IEEE.
SNAME (1950). Nomenclature for treating the motion of a
submerged body through a fluid. The Society of Naval
Architects and Marine Engineers, Technical and Re-
serach Bulletin, (1-5):1–15.
Triantafyllou, M. and Franz, S. (2003). Hover maneuvering
and control of marine vehicles. Lectures.
Yuh, J. (2000). Design and control of autonomous underwa-
ter robots: A survey. Autonomous Robots, 8(1):7–24.
A CONSTRAINED FINITE TIME OPTIMAL CONTROLLER FOR THE DIVING AND STEERING PROBLEM OF AN
AUTONOMOUS UNDERWATER VEHICLE
267