we can build flat outputs to give structural normal flat
forms. Simulation results show an acceptable perfor-
mance under the studied cases.
REFERENCES
Fliess, M., L´evine, J., Martin, P. and Rouchon, P., 1992. Sur
les systmes non linaires diffrentiellement plats. C. R.
Acad. Sci. Paris Sr. I Math., 315: pp 619-624.
Fliess, M., L´evine, J., Martin, P. and Rouchon, P., 1995.
Flatness defect of non-linear systems introductory the-
ory and examples. Internat. J. Control, 61: pp 1327-
1361.
Chwa, D., 2004. Sliding- Mode Tracking Control of non-
holonomic Wheeled Mobile robotin polar coordinates,
IEEE Trans. On Control Syst. Tech. Vol. 12, No. 4,pp
633-644.
Fierro, R., Lewis, F. L., 1995. Control of Nonholonomic
Mobile Robot: Backstepping Kinematics into Dynam-
ics, Proc. 34th Conf. On Decision & Control, New
Orleans, LA.
Fukao, T., Nakagawa, N. Adachi, 2000. Adaptive Track-
ing Control of a Nonholonomic Mobile Robot. IEEE
Trans, On Robotics and Automation, Vol. 16, No. 5,
pp609-615.
Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.
1991. A stable Tracking control method for a
Non-Holonomic Mobile Robot. Proc. IEEE/RSJ Int.
Workshop on Intelligent Robots and Systems, Osaka,
Japan, pp 1236-1241.
Lee, T-C., Lee, C.H., Teng, C-C. 1998. Tracking Control
of Mobile Robots Using the Backsteeping Technique,
Proc. 5th. Int. Conf. Contr., Automat Robot. Vision,
Singapore, pp 1715-1719.
Lee, T-C., Tai, K., 2001. Tracking Control of Unicycle
Modeled Mobile robots using a saturation feedback
controller, IEEE Trans. On Control Systems Technol-
ogy, Vol. 9, No. 2, pp 305-318.
Pawlowski, S., Dutkiewicz, K. Kozlowski, Wroblewski, W.,
2001. Fuzzy logic implementation in Mobile robot
Control, 2th Workshop On Robot Motion and Control,
pp 65-70.
Tsai, C-C., Lin, H-H, Lin, C-C., 2004. Trajectory Track-
ing control of a Laser-Guided wheeled mobile robot,
Proc. IEEE Int. Conf. On Control Application, Taipei,
Taiwan, pp 1055-1059.
Song, K. T., Sheen, L. H., 2000. Heuristic fuzzy-neural
Network and its application to reactive navigation of
a mobile robot, Proc. IEEE Int. Conf. On Control Ap-
plication, Taipei, Taiwan, pp 1055-1059.
Pereira da Silva., 2000. Flatness of nonlinear control sys-
tems a Cartan-K¨ahler approach, In Proc. Mathemat-
ical Theory of Networks et Systems MTNS’2000,
pages 1 10, Perpignan, Jun. 19-23.
Jakubczyk, B., Respondek, W., 1980. On linearization of
control systems, Bull. Acad. Pol. Sc., Ser. Sci. Math.,
28: pp 517-522.
Hunt, L. R., Su, R. and Meyer, G., 1983. Global transfor-
mations of nonlinear systems, IEEE Trans. Automat.
Control, 28:24-31.
Charlet, B., L´evine. J., On dynamic feedback linearization,
Systems Control Lett., 13: pp 143-151.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
280