REFERENCES
Axelsson, S. (2000). Intrusion detection systems: A sur-
vey and taxonomy. Technical Report 99-15, Chalmers
Univ.
Benferhat, S., Kenaza, T., and Mokhtari, A. (2008a).
False alert filtering and detection of high severe alerts
using naive bayes. In Computer Security Confer-
ence(CSC’08), South Carolina.
Benferhat, S., Kenaza, T., and Mokhtari, A. (2008b). Tree-
augmented naive bayes for alert correlation. In 3rd
conference on Advances in Computer Security and
Forensics(ACSF’08), pages 45–52.
Benferhat, S. and Sedki, K. (2008). Alert correlation based
on a logical handling of administrator preferences and
knowledge. In International Conference on Secu-
rity and Cryptography(SECRYPT’08), pages 50–56,
Porto, Portugal.
Bin, Z. and Ghorbani, A. (2006). Alert correlation for
extracting attack strategies. I. J. Network Security,
3(3):244–258.
Cheng, J. and Greiner, R. (2001). Learning bayesian be-
lief network classifiers: Algorithms and system. In
14th Conference of the Canadian Society on Compu-
tational Studies of Intelligence, pages 141–151, Lon-
don, UK. Springer-Verlag.
Chow, C. (1970). On optimum recognition error and reject
tradeoff. IEEE Transactions on Information Theory,
16(1):41–46.
Chow, C. and Liu, C. (1968). Approximating discrete prob-
ability distributions with dependence trees. Informa-
tion Theory, IEEE Transactions on, 14(3):462–467.
Cuppens, F. and Mi
`
ege, A. (2002). Alert correlation in a
cooperative intrusion detection framework. In IEEE
Symposium on Security and Privacy, pages 187–200,
USA.
Debar, H., Curry, D., and Feinstein, B. (2007). The Intru-
sion Detection Message Exchange Format (IDMEF).
Debar, H. and Wespi, A. (2001). Aggregation and correla-
tion of intrusion-detection alerts. In Recent Advances
in Intrusion Detection, pages 85–103, London, UK.
Springer-Verlag.
Faour, A. and Leray, P. (2006). A som and bayesian network
architecture for alert filtering in network intrusion de-
tection systems. In RTS - Conference on Real-Time
and Embedded Systems, pages 1161–1166.
Fawcett, T. (2003). Roc graphs: Notes and practical consid-
erations for data mining researchers. Technical Report
HPL-2003-4, HP Laboratories, Palo Alto, CA, USA.
Francois, O. and Leray, P. (2004). Evaluation
d’algorithmes d’apprentissage de structure pour les
r
´
eseaux bay
´
esiens. In Proceedings of 14eme Congr
`
es
Francophone Reconnaissance des Formes et Intel-
ligence Artificielle, RFIA 2004, pages 1453–1460,
Toulouse, France.
Jensen, F. V. and Nielsen, T. D. (2007). Bayesian Networks
and Decision Graphs (Information Science and Statis-
tics). Springer.
Leray, P., Zaragoza, H., and d’Alch-Buc, F. (2000). Per-
tinence des mesures de confiance en classification.
In 12eme Congres Francophone AFRIF-AFIA Re-
connaissance des Formes et Intelligence Articifielle
(RFIA 2000), pages 267–276, Paris, France.
Morin, B., M, L., Debar, H., and Ducass, M. (2009). A
logic-based model to support alert correlation in intru-
sion detection. Information Fusion, 10(4):285–299.
Ning, P., Cui, Y., and Reeves, D. S. (2002). Constructing at-
tack scenarios through correlation of intrusion alerts.
In 9th ACM conference on Computer and communica-
tions security, pages 245–254, NY, USA. ACM.
Patcha, A. and Park, J. (2007). An overview of anomaly de-
tection techniques: Existing solutions and latest tech-
nological trends. Computer Networks, 51(12):3448–
3470.
Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.
Staniford, S., Hoagland, J. A., and McAlerney, J. M. (2002).
Practical automated detection of stealthy portscans. J.
Comput. Secur., 10(1-2):105–136.
Tjhai, G. C., Papadaki, M., Furnell, S., and Clarke, N. L.
(2008). Investigating the problem of ids false alarms:
An experimental study using snort. In 23rd Inter-
national Information Security Conference SEC 2008,
pages 253–267.
Valdes, A. and Skinner, K. (2000). Adaptive, model-based
monitoring for cyber attack detection. In Recent Ad-
vances in Intrusion Detection, pages 80–92.
Valdes, A. and Skinner, K. (2001). Probabilistic alert cor-
relation. In Recent Advances in Intrusion Detection,
pages 54–68, London, UK. Springer-Verlag.
Verleysen, M., Rossi, F., and Franc¸ois, D. (2009). Ad-
vances in Feature Selection with Mutual Information.
In Villmann, T., Biehl, M., Hammer, B., and Verley-
sen, M., editors, Similarity-Based Clustering, Lecture
Notes in Computer Science, pages 52–69. Springer
Berlin / Heidelberg.
Wojciech, T. (2008). Anomaly-based intrusion detection us-
ing bayesian networks. depcos-relcomex, 0:211–218.
SECRYPT 2010 - International Conference on Security and Cryptography
24