6. Rabe-Hesketh, S., Bullmore, E., and Brammer, M.: The analysis of functional magnetic res-
onance images. Stat. Methods Med. Res. 6 (1997) 215-237.
7. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., and Frackowiak, R. S.
J.: Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain
Mapping 2 (1995) 189-210.
8. McKeown, M.J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., and
Sejnowski, T. J.: Analysis of fMRI data by blind separation into independent spatial compo-
nents. Human Brain Mapping, 6 (1998) 160-168.
9. Biswal, B. B., and Ulmer J. L.: Blind source separation of multiple signal sources of fMRI
data sets using independent component analysis. Journal of Computer Assisted Tomography,
23 (1999) 265-271.k
10. Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J.: Functional connectivity:
the principal component analysis of large (PET) datasets. Journal of Cerebral Blood Flow
and Metabolism, 13 (1993) 5-14.
11. Kohonen T.: Self-organized formation of topologically correct feature maps. Biol. Cybernet.
Vol. 43 (1982) 59-69.
12. Friston, K. J., Fletcher, P., Josephs, O. Holmes, A., Rugg, M. D., and Turner, R.: Event-
related fMRI: Characterizing differential responses. NeuroImage, 7 (1998) 30-40.
13. Glover, G. H.: Deconvolution of impulse response in event-related BOLD fMRI. NeuroIm-
age, 9 (1999) 416-429.
14. Chuang K. H., Chiu M. J., Lin C. C., and Chen J. H.: Model-Free functional MRI analysis
using Kohonen clustering neural network and fuzzy C-means. IEEE Transactions on Medical
Imaging, Vol. 18 (1999) 1117-1128.
15. Fischer, H. and Hennig J.: Neural network-nased analysis of MR time series. Magnetic Res-
onance in Medicine, Vol. 41 (1999) 124-131.
16. Liao, W., Chen, H., Yang, Q., Lei, X.: Analysis of fMRI Data Using Improved Self-
Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering. IEEE Transac-
tions on Medical Imaging, Vol. 27 (2008) 1472-1483.
17. Ngan, S. C. and Hu X.: Analysis of functional magnetic resonance imaging data using self-
organizing mapping with spatial connectivity. Magnetic Resonance in Medicine, vol. 41
(1999) 939-946.
18. Ngan, S. C., Yacoub E. S., Auffernann W. F, and Hu X.: Node merging in Kohonen’s self-
organizing mapping of fMRI data. Artificial Intelligence in Medicine, vol. 25 (2001) 19-33.
19. Peltier, S. J., Polk T. A., Noll D.C.: Detecting low-frequency functional connectivity in fMRI
using a self-organizing map (SOM) algorithm. Hum. Brain Mapp., vol. 20 (2003) 220-226
20. Gibbons, R. D., Lazar, N. A., Bhaumik, D. K., Sclove, S. L., Chen, H. Y., Thulborn, K. R.,
Sweeney, J. A., Hur, K., and Patterson, D.: Estimation and classification of fMRI hemody-
namic response patterns. NeuroImage, 22 (2004) 804-814.
21. de Araujo, D. B., Tedeschi, W., Santos, A. C., Elias, J. Jr., Neves, U. P., Baffa, O.: Shannon
entropy applied to the analysis of event-related fMRI time series. Neuroimage, 20(1) (2003)
311-317.
22. Shannon, C. E.: A mathematical theory of communication. Bell system technical journal 27
(1948) 379-423, 623-656.
23. Goutte, C., Toft, P., Rostrup, E., Nielsen F., A., and Hansen, L. K.: On clustering fMRI time
series. NeuroImage, Vol. 9 (1999) 298-310.
24. Wismuller A., Meyer-Base, A., Lange O., Auer D., Reiser, M. F., and Sumners, DeWitt.:
Model-free functional MRI analysis based on unsupervised clustering. Journal of Biomedical
Informatics 37, (2004) 10-18.